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Motivation

When looking at the diameter of Hofer’s norm we defined the norm of γ ∈ π1(Ham(M,Ω)) as

ν(γ) = inf
F

length{ft} = inf
F

∫ 1

0

max
x

Ft −min
x
Ftdt

where Ft is the corresponding Hamiltonian and the infimum goes over all normalized periodic Hamiltonian functions
generating a loop representing γ. We then defined the length spectrum of Ham(M,Ω) as

{ν(γ) | γ ∈ π1(Ham(M,Ω))}

We saw that ν(γ) = ν(−γ) and ν(γ1 + γ2) ≤ ν(γ1) + ν(γ2) (additivly written as π1(Ham(M,Ω)) is abelian). We
now want to take a look at the positive and negative parts of ν separately and set

ν+(γ) = inf
F

∫ 1

0

max
x

Ftdt = inf
F

max
x,t

F (x, t)

ν−(γ) = inf
F

∫ 1

0

−min
x
Ftdt = inf

F
(−min

x,t
F (x, t))

where the latter equalities have been show in an earlier lecture. Since they are defined as infima it holds that
ν+(γ) = ν−(−γ) and ν(γ) ≥ ν+(γ) + ν−(γ). Recall that for S2 with a normalized volume form Ω, such that
the total volume is 1, we have Ham(S2,Ω) = Symp0(S

2,Ω) and π1(Ham(S2)) ∼= Z2. The non-trivial element is
generated by a rotation around the x3-axis with Hamiltonian F = 1

2x3 (the normalization here essentially divides
everything by 4π).Therefore maxF = −minF = 1

2 and thus ν+(γ) ≤ 1
2 . Actually equality holds here (Theorem

9.1.A in [Pol12]). To show this is our goal now as it allows us to compute ν(γ) = 1 as follows: Denote by {ft}
the Hamiltonian loop of F = 1

2x3, then length{ft} = 1
2 − (− 1

2 ) = 1, thus ν(γ) ≤ 1 where γ ∈ π1(Ham(S2,Ω)) is
generated by {ft}. Since γ = −γ we have ν−(γ) = ν+(−γ) = 1

2 and therefore 1 = ν+(γ) + ν−(γ) ≤ ν(γ) ≤ 1. Such
Hamiltonian loops {ft} representing γ ̸= 0 with length{ft} = ν(γ) are called closed minimal geodesics. As the
starting point and ending point of a loop are equal these closed minimal geodesics aren’t strictly minimal geodesics.

Symplectic fibrations over S2

Definition. Let F be a smooth manifold. A locally trivial fibration with fiber F is a map p : P → B between
smooth manifolds and an open cover {Uα}α∈A with differmorphisms ϕα, such that for all α ∈ A the diagram

p−1(Uα) Uα × F

Uα

ϕα

∼=

p projUα

commutes, where proj denotes the projection. We call P the total space, B the base space and Φα a local triviali-
sation. For all b ∈ B and α ∈ A we get a map

ϕα,b = ϕα|p−1(b) ◦ projF : p−1(b) → F
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As p−1(b) ∼= F these maps can be viewed as elements of Diff(F ). We say the fibration is symplecic if the fiber F is a
symplectic manifold (M,Ω) and the fibration has structure group Symp(M,Ω), meaning all the transition functions

ϕβ,b ◦ (ϕα,b)−1 : F → F

are symplectic whenever b ∈ Uα ∩ Uβ.

Henceforth we consider all symplectic fibrations to be over S2. Let (M,Ω) be a closed symplectic manifold with the
additional assumption that H1(M,R) = 0 and therefore Ham(M,ω) = Symp0(M,Ω) (see remark 1.4.C in [Pol12]).
Let p : P → S2 be a symplectic fibration with fiber (M,Ω) such that all fibers p(x)−1 for x ∈ S2 have a symplectic
form Ωx that varies smoothly with x such that all (p−1(x),Ωx) are symplectomorphic to (M,Ω). This can be
achieved by giving each fiber the pullback form Ωx = ϕ∗α,xΩ for x ∈ Uα. Note that this is independent of the choice
of trivialisation as the transition functions are symplectomorphic.
For a loop of Hamiltonian differmorphisms {ft} of (M,Ω) we now construct a symplectic fibration over S2 as follows:
Take two closed unit 2−disks D2

+ and D2
− with opposite orientation and define

P =M ×D2
− ∪ψ M ×D2

+

with ψ :M × S1 →M × S1, (z, t) 7→ (ftz, t), where we identify S1 ∼= R/Z.

Note that this construction gives an orientation to S2. If two Hamiltonian loops are homotopic the resulting
fibrations are isomorphic. On the other hand if given a symplectic fibration over S2 one can reconstruct the
homotopy class γ giving rise to an isomorphic fibration as follows: First take two antipodal closed hemispheres.
As these hemispheres are contractible the locally trivial fibration can be trivialized over the entire hemisphere.
Comparing the borders now gives rise to a loop of symplectomorphisms that determine γ. We write P (γ) for the
fibration given by γ. Note that P (0) = S2 × (M,Ω), the trivial fibration.
For the case where the fiber is also S2 and γ of the 1−turn rotation, a to P (γ) isomorphic fibration can be constructed
as follows: Recall that for a vector space V over a field K the projectivization PV is defined as the orbit space of
V \ {0} under the action of multiplication by the multiplicative group K \{0}. Identifying S2 ∼= CP 1(:= P(C2)) we
take two vector bundles: C, the trivial one C×CP 1 and T , the tautological line bundle where the fibers are just
the orbits within C2 adding 0 (a one-dimensional complex subspace). We now define P(T ⊕C) as the fibration over
CP 1 where we first take the Whitney sum T ⊕C and then projectivize in each fiber. Note that in T ⊕C each fiber
is isomorphic to C2 so their projectivization is indeed isomorphic to CP 1 ∼= S2.

Symplectic connections

Definition. Let p : P → B be a symplectic fibration with fiber (M,Ω). For x ∈ P denote by

Vertx = ker dp(x) = Tp−1(p(x))x

the vertical tangent space. A connection σ on P is collection of horizontal subspaces Horx such that

TMx = Vertx⊕Horx
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Restricting dp(x) to Horx now defines an isomorphism dp(x)|Horx : Horx → TBx allowing us to uniquely lift a
vector field on B to P . Every smooth (for simplicity regular and simple) path γ in B from b to b′ can now be lifted,
given a fixed starting point b♯ ∈ p−1(b), by first locally extending and then lifting it’s velocity vector field followed
by taking the integral curve starting at b♯. This defines diffeomorphisms Φγ : p−1(b) → p−1(b′), which only depend
on the homotopy type of γ relative endpoints, called parallel transports and we say the connection is symplectic if
these maps preserve the symplectic structure of the fibers, meaning Φ∗

γΩb′ = Ωb.

We now define the curvature ρσ of a connection σ as follows: Given x ∈ S2 and ξ, η ∈ TS2
x we extend ξ and η

locally and lift it to the connection to ξ♯ and η♯ and define

ρσ(ξ, η) = ([ξ♯, η♯])Vert

Here Vert denotes the projection onto the vertical components. This produces a vector field in the lie algebra of
Symp(p−1(x)), therefore a Hamiltonian vector field as H1(M,R) = 0. We can therefore identify it with it’s unique
normalized Hamiltonian and therefore view ρσ(ξ, η) as a function p−1(x) → R.
Given an normalized area form τ on S2, which we gave an orientation, we can use the fact that all 2−forms are a
multiple of τ to set

ρσ = Lστ

where Lσ : P → R. Therefore ρσ is a function taking, for a given x ∈ S2, two elements ξ, τ ∈ TS2
x and a point of

p−1(x) to R.
For all (x, z) ∈ P we can write the tangent space as

TP(x,z) = T (p−1(x))z ⊕ TS2
x

Using this decomposition we can now define the coupling form of σ as the 2−form on P

δσ(v ⊕ ξ, w ⊕ η) = Ωx(v, w)− ρ(ξ, η)(z)

One can show that δσ is closed, thus let c be it’s class in H2(P,R). Restricting c to a fiber p−1(x) gives the class
of Ωx (remember Ωx defines a cohomology class as we assumed that H1(M,R) = 0).

Theorem (9.3.A in [Pol12], for a proof see [MS17]). The class c is the unique cohomology class in H2(P,R) such
that it restricts to [Ωx] on the fibers and cn+1 = 0 where 2n = dimM .

We now introduce the weak coupling construction. For ε > 0 small enough and t ∈ [0, ε) there exists a smooth
family of closed 2−forms ωt on P such that:

• ω0 = p∗τ

• [ωt] = tc+ p∗[τ ] for all t

• ωt restricts to Ωx on the fibers
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• ωt is symplectic for t > 0

We now set ε(P ) = sup ε where the supremum is taken over all such weak coupling constructions. Also note that
ε(P (0)) = +∞. We also define

χ+(P ) = sup
σ

1

maxP Lσ

Note that these constructions don’t depend on our choice of τ .

Theorem (9.3.B of [Pol12]). It holds that ε(P (γ)) ≥ χ+(P (γ)) ≥ 1
ν+(γ) .

In fact these inequalities are actually equalities, but these inequalities suffice for our purpose.

Proof. We write P for P (γ) and first show that ε(P ) ≥ χ+(P ): Let σ be a symplectic connection on P and define

ωt = p∗τ + tδσ

where δσ is the coupling form of σ defined earlier. Evaluating at (x, z) ∈ P yields

ωt,(x,z) = tΩx ⊕ (−tLσ(x, z)τ) = tΩx ⊕ ((1− tLσ(x, z))τ)

It clearly holds by definition that ω0 = p∗τ , [ωt] = tc+ p∗[τ ] and from the ladder equality one sees that it restricts
to tΩx on the fibers. To show that it is indeed a weak coupling construciton we need to show tht it is symplectic.
Since tΩx is non-degenerate we need to show that (1 − tLσ(x, z))τ isn’t and since it starts at τ for t = 0 we need
1− tLσ(x, y) > 0 for all (x, y) ∈ P with in turn means

1

maxP Lσ(x, z)
> t

By definition for all κ > 0 small enough there exists a connection σ such that

1

maxP Lσ(x, z)
> χ+(P )− κ

We have therefore a construction that works for t ∈ [0, χ+(P ) − κ), thus ε(P ) ≥ χ+(P ) − κ and since κ > 0 was
arbitrarly small we’ve shown the existence of such a construction and that

ε(P ) ≥ χ+(P )

We now show that χ+(P ) ≥ 1
ν+(P ) : For any closed 2−form ω on P that restricts to Ωx on the fibers the subspaces

σ(x,z) = {ξ ∈ TP(x,z) | ιξω = 0 on Tp−1(x)z}

form a complement to Tp−1(x)z as the fibers are either two-dimensinal and Tp−1(x)z is thus Lagrangian or ω
is degenerate and σ(x,z) which is, due to the non-degeneracy of Ωx, clearly a at most two-dimensional subspace
transversal to Tp−1(x)z, is non-trivial and even dimensional. Therefore σ(x,z) forms a symplectic connection. Now
take a loop of Hamiltonian diffeomorphisms {ft} generated by a normalized Hamiltonian F ∈ H and take polar
coordinates (u, t) ∈ (0, 1] × R/Z on D2 (excluding the center) and define a smooth monotonely growing cutoff
function ϕ : [0, 1] → [0, 1] that is constant 0 near 0 and constant 1 near 1. Set

P =M ×D2
− ∪ψ M ×D2

+

with ψ :M × S1 →M × S2, (z, t) 7→ (ftz, t) and define a closed 2−form ω on P as

ω =

{
Ω on M ×D2

+

Ω+ d(ϕ(u)Ht(z)) ∧ dt on M ×D2
−

This is well defined as ψ∗Ω = Ω+ dHt ∧ dt.
We are now interested in calculating the curvature ρσ of the connection σ belonging to ω under the construction
above. Note that ρσ ≡ 0 on D2

+ and close to the south pole, which is good for us as our polar coordinates are singular

at the poles. To calculate ρσ we now need to lift the coordinate vector fields ∂
∂u and ∂

∂t for all (x, z) ∈M ×D2
− to

4



the connection:
First for ∂

∂u : It is of the form

∂̃

∂u
=

∂

∂u
+ v

for v ∈ Tp−1(x)z. By definition of our connection we have

0 = ω

(
∂̃

∂u
, w

)
= ω(v, w) = Ω(v, w)

for all w ∈ Tp−1(x)z it follows from non-degeneracy of Ω on the fibers that v = 0 and thus

∂̃

∂u
=

∂

∂u

For ∂
∂t we set similarly

∂̃

∂t
=

∂

∂t
+ v

for v ∈ Tp−1(x)z and get as before that for all w ∈ Tp−1(x)z

0 = ω

(
∂̃

∂t
, w

)
= ω

(
∂

∂t
+ v, w

)
= Ω(v, w)− d(ϕ(u)Ht)(w)

which means ιvΩ = d(ϕ(u)Ht) and therefore

v = −ϕ(u) sgradHt

implying

∂̃

∂t
=

∂

∂t
− ϕ(u) sgradHt

We can now calculate

ρσ
(
∂

∂t
,
∂

∂u

)
=

[
∂

∂t
− ϕ(u) sgradHt,

∂

∂u

]Vert

=

(
ϕ′(u) sgradHt − ϕ(u) sgradHt

∂

∂u

)Vert

= ϕ′(u) sgradHt

as
[
∂
∂t ,

∂
∂u

]Vert

= 0. Identifying Hamiltonian vector fields with normalized Hamiltonian functions as above we get

ρσ
(
∂

∂t
,
∂

∂u

)
= ϕ′(u)Ht(z)

Now fix κ > 0 and define an area form τ on S2 such that it is of the form (1−κ)dt∧ du on D2
− (which has negative

orientation) and extend it to D2
+ such that D2

+ has area κ. We get ρσ = Lσ(u, t, z)τ , where

Lσ(u, t, z) =

{
0 on M ×D2

+
ϕ′(u)Ht(z)

1−κ on M ×D2
−

If we now choose ϕ such that ϕ′ ≤ 1 + κ and {ft} such that maxzHt = maxz Ft ≤ ν+(γ) + κ we get

max
P

Lσ ≤ 1 + κ

1− κ
(ν+(γ) + κ)

implying

χ+(P ) = sup
σ

1

maxP Lσ
≥ 1− κ

(1 + κ)(ν+(γ) + κ)

Since κ was arbitrarly small we finally get

χ+(P ) ≥
1

ν+(γ)
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An application to length spectrum

The final ingredient to proof that ν+(γ) =
1
2 for γ the homotopy class of the one turn rotation of S2 is the following

theorem which will be part of a future presentation (chapter 10 of [Pol12]):

Theorem (9.4.A in [Pol12]). ε(P (γ)) ≤ 2

Proof of 9.1.A. We already know that ν+(γ) ≤ 1
2 . By 9.3.B we have

2 ≥ ε(P (γ)) ≥ χ+(P (γ)) ≥
1

ν+(γ)
≥ 2

and therefore ν+(γ) =
1
2 .

References

[Pol12] Leonid Polterovich. The Geometry of the Group of Symplectic Diffeomorphism. Birkhäuser Basel, 2012.
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