Symplectic fibrations

401-4530-23L Introduction to Hofer's Geometry

10.05.2023 FS23

Motivation

When looking at the diameter of Hofer's norm we defined the norm of $\gamma \in \pi_1(\operatorname{Ham}(M,\Omega))$ as

$$\nu(\gamma) = \inf_{F} \operatorname{length}\{f_t\} = \inf_{F} \int_0^1 \max_x F_t - \min_x F_t dt$$

where F_t is the corresponding Hamiltonian and the infimum goes over all normalized periodic Hamiltonian functions generating a loop representing γ . We then defined the length spectrum of Ham (M, Ω) as

$$\{\nu(\gamma) \mid \gamma \in \pi_1(\operatorname{Ham}(M,\Omega))\}$$

We saw that $\nu(\gamma) = \nu(-\gamma)$ and $\nu(\gamma_1 + \gamma_2) \leq \nu(\gamma_1) + \nu(\gamma_2)$ (additively written as $\pi_1(\text{Ham}(M, \Omega))$ is abelian). We now want to take a look at the positive and negative parts of ν separately and set

$$\nu_{+}(\gamma) = \inf_{F} \int_{0}^{1} \max_{x} F_{t} dt = \inf_{F} \max_{x,t} F(x,t)$$
$$\nu_{-}(\gamma) = \inf_{F} \int_{0}^{1} - \min_{x} F_{t} dt = \inf_{F} (-\min_{x,t} F(x,t))$$

where the latter equalities have been show in an earlier lecture. Since they are defined as infima it holds that $\nu_+(\gamma) = \nu_-(-\gamma)$ and $\nu(\gamma) \ge \nu_+(\gamma) + \nu_-(\gamma)$. Recall that for S^2 with a normalized volume form Ω , such that the total volume is 1, we have $\operatorname{Ham}(S^2, \Omega) = \operatorname{Symp}_0(S^2, \Omega)$ and $\pi_1(\operatorname{Ham}(S^2)) \cong \mathbb{Z}_2$. The non-trivial element is generated by a rotation around the x_3 -axis with Hamiltonian $F = \frac{1}{2}x_3$ (the normalization here essentially divides everything by 4π). Therefore max $F = -\min F = \frac{1}{2}$ and thus $\nu_+(\gamma) \le \frac{1}{2}$. Actually equality holds here (Theorem 9.1.A in [Pol12]). To show this is our goal now as it allows us to compute $\nu(\gamma) = 1$ as follows: Denote by $\{f_t\}$ the Hamiltonian loop of $F = \frac{1}{2}x_3$, then length $\{f_t\} = \frac{1}{2} - (-\frac{1}{2}) = 1$, thus $\nu(\gamma) \le 1$ where $\gamma \in \pi_1(\operatorname{Ham}(S^2, \Omega))$ is generated by $\{f_t\}$. Since $\gamma = -\gamma$ we have $\nu_-(\gamma) = \nu_+(-\gamma) = \frac{1}{2}$ and therefore $1 = \nu_+(\gamma) + \nu_-(\gamma) \le \nu(\gamma) \le 1$. Such Hamiltonian loops $\{f_t\}$ representing $\gamma \ne 0$ with length $\{f_t\} = \nu(\gamma)$ are called closed minimal geodesics. As the starting point and ending point of a loop are equal these closed minimal geodesics aren't strictly minimal geodesics.

Symplectic fibrations over S^2

Definition. Let F be a smooth manifold. A locally trivial fibration with fiber F is a map $p : P \to B$ between smooth manifolds and an open cover $\{U_{\alpha}\}_{\alpha \in A}$ with differmorphisms ϕ_{α} , such that for all $\alpha \in A$ the diagram

commutes, where proj denotes the projection. We call P the total space, B the base space and Φ_{α} a local trivialisation. For all $b \in B$ and $\alpha \in A$ we get a map

$$\phi_{\alpha,b} = \phi_{\alpha}|_{p^{-1}(b)} \circ \operatorname{proj}_F : p^{-1}(b) \to F$$

As $p^{-1}(b) \cong F$ these maps can be viewed as elements of Diff(F). We say the fibration is symplecic if the fiber F is a symplectic manifold (M, Ω) and the fibration has structure group $\text{Symp}(M, \Omega)$, meaning all the transition functions

$$\phi_{\beta,b} \circ (\phi_{\alpha,b})^{-1} : F \to F$$

are symplectic whenever $b \in U_{\alpha} \cap U_{\beta}$.

Henceforth we consider all symplectic fibrations to be over S^2 . Let (M, Ω) be a closed symplectic manifold with the additional assumption that $H^1(M, \mathbb{R}) = 0$ and therefore $\operatorname{Ham}(M, \omega) = \operatorname{Symp}_0(M, \Omega)$ (see remark 1.4.C in [Pol12]). Let $p: P \to S^2$ be a symplectic fibration with fiber (M, Ω) such that all fibers $p(x)^{-1}$ for $x \in S^2$ have a symplectic form Ω_x that varies smoothly with x such that all $(p^{-1}(x), \Omega_x)$ are symplectomorphic to (M, Ω) . This can be achieved by giving each fiber the pullback form $\Omega_x = \phi^*_{\alpha,x}\Omega$ for $x \in U_\alpha$. Note that this is independent of the choice of trivialisation as the transition functions are symplectomorphic.

For a loop of Hamiltonian differmorphisms $\{f_t\}$ of (M, Ω) we now construct a symplectic fibration over S^2 as follows: Take two closed unit 2-disks D^2_+ and D^2_- with opposite orientation and define

$$P = M \times D^2_{-} \cup_{\psi} M \times D^2_{+}$$

with $\psi: M \times S^1 \to M \times S^1, (z,t) \mapsto (f_t z, t)$, where we identify $S^1 \cong \mathbb{R}/\mathbb{Z}$.

Note that this construction gives an orientation to S^2 . If two Hamiltonian loops are homotopic the resulting fibrations are isomorphic. On the other hand if given a symplectic fibration over S^2 one can reconstruct the homotopy class γ giving rise to an isomorphic fibration as follows: First take two antipodal closed hemispheres. As these hemispheres are contractible the locally trivial fibration can be trivialized over the entire hemisphere. Comparing the borders now gives rise to a loop of symplectomorphisms that determine γ . We write $P(\gamma)$ for the fibration given by γ . Note that $P(0) = S^2 \times (M, \Omega)$, the trivial fibration.

For the case where the fiber is also S^2 and γ of the 1-turn rotation, a to $P(\gamma)$ isomorphic fibration can be constructed as follows: Recall that for a vector space V over a field \mathbb{K} the projectivization $\mathbb{P}V$ is defined as the orbit space of $V \setminus \{0\}$ under the action of multiplication by the multiplicative group $\mathbb{K} \setminus \{0\}$. Identifying $S^2 \cong \mathbb{C} P^1 (:= \mathbb{P}(\mathbb{C}^2))$ we take two vector bundles: C, the trivial one $\mathbb{C} \times \mathbb{C} P^1$ and T, the tautological line bundle where the fibers are just the orbits within \mathbb{C}^2 adding 0 (a one-dimensional complex subspace). We now define $\mathbb{P}(T \oplus C)$ as the fibration over $\mathbb{C} P^1$ where we first take the Whitney sum $T \oplus C$ and then projectivize in each fiber. Note that in $T \oplus C$ each fiber is isomorphic to \mathbb{C}^2 so their projectivization is indeed isomorphic to $\mathbb{C} P^1 \cong S^2$.

Symplectic connections

Definition. Let $p: P \to B$ be a symplectic fibration with fiber (M, Ω) . For $x \in P$ denote by

$$\operatorname{Vert}_{x} = \ker dp(x) = Tp^{-1}(p(x))_{x}$$

the vertical tangent space. A connection σ on P is collection of horizontal subspaces Hor_x such that

 $TM_x = \operatorname{Vert}_x \oplus \operatorname{Hor}_x$

Restricting dp(x) to Hor_x now defines an isomorphism $dp(x)|_{\text{Hor}_x}$: Hor_x $\to TB_x$ allowing us to uniquely lift a vector field on B to P. Every smooth (for simplicity regular and simple) path γ in B from b to b' can now be lifted, given a fixed starting point $b^{\sharp} \in p^{-1}(b)$, by first locally extending and then lifting it's velocity vector field followed by taking the integral curve starting at b^{\sharp} . This defines diffeomorphisms $\Phi_{\gamma}: p^{-1}(b) \to p^{-1}(b')$, which only depend on the homotopy type of γ relative endpoints, called parallel transports and we say the connection is symplectic if these maps preserve the symplectic structure of the fibers, meaning $\Phi^*_{\gamma}\Omega_{b'} = \Omega_b$.

We now define the curvature ρ^{σ} of a connection σ as follows: Given $x \in S^2$ and $\xi, \eta \in TS_x^2$ we extend ξ and η locally and lift it to the connection to ξ^{\sharp} and η^{\sharp} and define

$$\rho^{\sigma}(\xi,\eta) = ([\xi^{\sharp},\eta^{\sharp}])^{\operatorname{Vert}}$$

Here Vert denotes the projection onto the vertical components. This produces a vector field in the lie algebra of $\operatorname{Symp}(p^{-1}(x))$, therefore a Hamiltonian vector field as $H^1(M, \mathbb{R}) = 0$. We can therefore identify it with it's unique normalized Hamiltonian and therefore view $\rho^{\sigma}(\xi, \eta)$ as a function $p^{-1}(x) \to \mathbb{R}$.

Given an normalized area form τ on S^2 , which we gave an orientation, we can use the fact that all 2-forms are a multiple of τ to set

$$\rho^{\sigma} = L^{\sigma}\tau$$

where $L^{\sigma}: P \to \mathbb{R}$. Therefore ρ^{σ} is a function taking, for a given $x \in S^2$, two elements $\xi, \tau \in TS_x^2$ and a point of $p^{-1}(x)$ to \mathbb{R} .

For all $(x, z) \in P$ we can write the tangent space as

$$TP_{(x,z)} = T(p^{-1}(x))_z \oplus TS_x^2$$

Using this decomposition we can now define the coupling form of σ as the 2-form on P

$$\delta^{\sigma}(v \oplus \xi, w \oplus \eta) = \Omega_x(v, w) - \rho(\xi, \eta)(z)$$

One can show that δ^{σ} is closed, thus let c be it's class in $H^2(P,\mathbb{R})$. Restricting c to a fiber $p^{-1}(x)$ gives the class of Ω_x (remember Ω_x defines a cohomology class as we assumed that $H^1(M,\mathbb{R}) = 0$).

Theorem (9.3.A in [Pol12], for a proof see [MS17]). The class c is the unique cohomology class in $H^2(P, \mathbb{R})$ such that it restricts to $[\Omega_x]$ on the fibers and $c^{n+1} = 0$ where $2n = \dim M$.

We now introduce the weak coupling construction. For $\varepsilon > 0$ small enough and $t \in [0, \varepsilon)$ there exists a smooth family of closed 2-forms ω_t on P such that:

- $\omega_0 = p^* \tau$
- $[\omega_t] = tc + p^*[\tau]$ for all t
- ω_t restricts to Ω_x on the fibers

• ω_t is symplectic for t > 0

We now set $\varepsilon(P) = \sup \varepsilon$ where the supremum is taken over all such weak coupling constructions. Also note that $\varepsilon(P(0)) = +\infty$. We also define

$$\chi_+(P) = \sup_{\sigma} \frac{1}{\max_P L^{\sigma}}$$

Note that these constructions don't depend on our choice of τ .

Theorem (9.3.B of [Pol12]). It holds that $\varepsilon(P(\gamma)) \ge \chi_+(P(\gamma)) \ge \frac{1}{\nu_+(\gamma)}$.

In fact these inequalities are actually equalities, but these inequalities suffice for our purpose.

Proof. We write P for $P(\gamma)$ and first show that $\varepsilon(P) \ge \chi_+(P)$: Let σ be a symplectic connection on P and define

$$\omega_t = p^* \tau + t \delta^\sigma$$

where δ^{σ} is the coupling form of σ defined earlier. Evaluating at $(x, z) \in P$ yields

$$\omega_{t,(x,z)} = t\Omega_x \oplus (-tL^{\sigma}(x,z)\tau) = t\Omega_x \oplus ((1-tL^{\sigma}(x,z))\tau)$$

It clearly holds by definition that $\omega_0 = p^* \tau$, $[\omega_t] = tc + p^*[\tau]$ and from the ladder equality one sees that it restricts to $t\Omega_x$ on the fibers. To show that it is indeed a weak coupling construction we need to show that it is symplectic. Since $t\Omega_x$ is non-degenerate we need to show that $(1 - tL^{\sigma}(x, z))\tau$ isn't and since it starts at τ for t = 0 we need $1 - tL^{\sigma}(x, y) > 0$ for all $(x, y) \in P$ with in turn means

$$\frac{1}{\max_P L^{\sigma}(x,z)} > t$$

By definition for all $\kappa > 0$ small enough there exists a connection σ such that

$$\frac{1}{\max_P L^{\sigma}(x,z)} > \chi_+(P) - \kappa$$

We have therefore a construction that works for $t \in [0, \chi_+(P) - \kappa)$, thus $\varepsilon(P) \ge \chi_+(P) - \kappa$ and since $\kappa > 0$ was arbitrarly small we've shown the existence of such a construction and that

$$\varepsilon(P) \ge \chi_+(P)$$

We now show that $\chi_+(P) \ge \frac{1}{\nu_+(P)}$: For any closed 2-form ω on P that restricts to Ω_x on the fibers the subspaces

$$\sigma_{(x,z)} = \{\xi \in TP_{(x,z)} \mid \iota_{\xi}\omega = 0 \text{ on } Tp^{-1}(x)_z\}$$

form a complement to $Tp^{-1}(x)_z$ as the fibers are either two-dimensional and $Tp^{-1}(x)_z$ is thus Lagrangian or ω is degenerate and $\sigma_{(x,z)}$ which is, due to the non-degeneracy of Ω_x , clearly a at most two-dimensional subspace transversal to $Tp^{-1}(x)_z$, is non-trivial and even dimensional. Therefore $\sigma_{(x,z)}$ forms a symplectic connection. Now take a loop of Hamiltonian diffeomorphisms $\{f_t\}$ generated by a normalized Hamiltonian $F \in \mathcal{H}$ and take polar coordinates $(u,t) \in (0,1] \times \mathbb{R}/\mathbb{Z}$ on D^2 (excluding the center) and define a smooth monotonely growing cutoff function $\phi: [0,1] \to [0,1]$ that is constant 0 near 0 and constant 1 near 1. Set

$$P = M \times D^2_{-} \cup_{\psi} M \times D^2_{+}$$

with $\psi: M \times S^1 \to M \times S^2, (z,t) \mapsto (f_t z, t)$ and define a closed 2-form ω on P as

$$\omega = \begin{cases} \Omega & \text{on } M \times D_+^2 \\ \Omega + d(\phi(u)H_t(z)) \wedge dt & \text{on } M \times D_-^2 \end{cases}$$

This is well defined as $\psi^* \Omega = \Omega + dH_t \wedge dt$.

We are now interested in calculating the curvature ρ^{σ} of the connection σ belonging to ω under the construction above. Note that $\rho^{\sigma} \equiv 0$ on D_{+}^{2} and close to the south pole, which is good for us as our polar coordinates are singular at the poles. To calculate ρ^{σ} we now need to lift the coordinate vector fields $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial t}$ for all $(x, z) \in M \times D_{-}^{2}$ to the connection: First for $\frac{\partial}{\partial u}$: It is of the form

$$\frac{\widetilde{\partial}}{\partial u} = \frac{\partial}{\partial u} + v$$

for $v \in Tp^{-1}(x)_z$. By definition of our connection we have

$$0 = \omega\left(\frac{\widetilde{\partial}}{\partial u}, w\right) = \omega(v, w) = \Omega(v, w)$$

for all $w \in Tp^{-1}(x)_z$ it follows from non-degeneracy of Ω on the fibers that v = 0 and thus

$$\frac{\partial}{\partial u} = \frac{\partial}{\partial u}$$

For $\frac{\partial}{\partial t}$ we set similarly

$$\widetilde{\frac{\partial}{\partial t}} = \frac{\partial}{\partial t} + v$$

for $v \in Tp^{-1}(x)_z$ and get as before that for all $w \in Tp^{-1}(x)_z$

$$0 = \omega\left(\frac{\widetilde{\partial}}{\partial t}, w\right) = \omega\left(\frac{\partial}{\partial t} + v, w\right) = \Omega(v, w) - d(\phi(u)H_t)(w)$$

which means $\iota_v\Omega=d(\phi(u)H_t)$ and therefore

$$v = -\phi(u) \operatorname{sgrad} H_t$$

implying

$$\widetilde{\frac{\partial}{\partial t}} = \frac{\partial}{\partial t} - \phi(u) \operatorname{sgrad} H_t$$

We can now calculate

$$\rho^{\sigma}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial u}\right) = \left[\frac{\partial}{\partial t} - \phi(u)\operatorname{sgrad} H_t, \frac{\partial}{\partial u}\right]^{\operatorname{Vert}} = \left(\phi'(u)\operatorname{sgrad} H_t - \phi(u)\operatorname{sgrad} H_t \frac{\partial}{\partial u}\right)^{\operatorname{Vert}} = \phi'(u)\operatorname{sgrad} H_t$$

as $\left[\frac{\partial}{\partial t}, \frac{\partial}{\partial u}\right]^{\text{Vert}} = 0$. Identifying Hamiltonian vector fields with normalized Hamiltonian functions as above we get

$$\rho^{\sigma}\left(\frac{\partial}{\partial t},\frac{\partial}{\partial u}\right) = \phi'(u)H_t(z)$$

Now fix $\kappa > 0$ and define an area form τ on S^2 such that it is of the form $(1 - \kappa)dt \wedge du$ on D_{-}^2 (which has negative orientation) and extend it to D_{+}^2 such that D_{+}^2 has area κ . We get $\rho^{\sigma} = L^{\sigma}(u, t, z)\tau$, where

$$L^{\sigma}(u,t,z) = \begin{cases} 0 & \text{on } M \times D_{+}^{2} \\ \frac{\phi'(u)H_{t}(z)}{1-\kappa} & \text{on } M \times D_{-}^{2} \end{cases}$$

If we now choose ϕ such that $\phi' \leq 1 + \kappa$ and $\{f_t\}$ such that $\max_z H_t = \max_z F_t \leq \nu_+(\gamma) + \kappa$ we get

$$\max_{P} L^{\sigma} \le \frac{1+\kappa}{1-\kappa} (\nu_{+}(\gamma) + \kappa)$$

implying

$$\chi_+(P) = \sup_{\sigma} \frac{1}{\max_P L^{\sigma}} \ge \frac{1-\kappa}{(1+\kappa)(\nu_+(\gamma)+\kappa)}$$

Since κ was arbitrarly small we finally get

$$\chi_+(P) \ge \frac{1}{\nu_+(\gamma)}$$

An application to length spectrum

The final ingredient to proof that $\nu_+(\gamma) = \frac{1}{2}$ for γ the homotopy class of the one turn rotation of S^2 is the following theorem which will be part of a future presentation (chapter 10 of [Pol12]):

Theorem (9.4.A in [Pol12]). $\varepsilon(P(\gamma)) \leq 2$

Proof of 9.1.A. We already know that $\nu_+(\gamma) \leq \frac{1}{2}$. By 9.3.B we have

$$2 \ge \varepsilon(P(\gamma)) \ge \chi_+(P(\gamma)) \ge \frac{1}{\nu_+(\gamma)} \ge 2$$

and therefore $\nu_+(\gamma) = \frac{1}{2}$.

References

- [Pol12] Leonid Polterovich. The Geometry of the Group of Symplectic Diffeomorphism. Birkhäuser Basel, 2012. ISBN: 978-3-0348-8299-6.
- [MS17] Dusa McDuff and Dietmar Salamon. Introduction to Symplectic Topology. Oxford University Press, Mar. 2017. ISBN: 9780198794899.