Motivation

One of the nain result of the talk is the proof of $\epsilon(P(s))\leq 2$, which implies $v_+(s) = \frac{1}{2}$ (as shown by Marius), thus completing the computation of the length spectrum of Ham (S2). This is an instance of a general problem that requires pseudo-holomorphic curves to be solved.

Quasi - Kähler structure

Def. Let M be a smooth manifold. An almost complex structure on M is an automorphism
$$
J: TM \rightarrow TM
$$
 s.t. $S^2 = -11$

\nAn almost complex manifold is a pair (M, J)

\nDenote the space of almost complex structures on M by

\n $\mathcal{J}(M) := \{ J \in C^{\infty}(M, End(TM)) | J^2 = -11 \}$

Def Let (M, w) be a symplectic manifold. An almost complex structure J on M is compatible if

$$
9:\text{TM} \times \text{TM} \longrightarrow \mathbb{R}
$$

$$
(\xi, y) \longmapsto w(\xi, \overline{y})
$$

is a Riemannian metric on M.

Def The almost complex structure J is integrable if M^{2n} can be covered by coordinate charts $\phi: U \longrightarrow \phi(U) \subset \mathbb{R}^{2n}$ s.t. $\forall g \in M$

$$
J\phi(q) \circ J = J_{o} \circ J\phi(q) : T_{q}M \longrightarrow \mathbb{R}^{2d}
$$

where $J_0 = \begin{pmatrix} 0 & -\mathbb{I}_n \\ \mathbb{I}_n & 0 \end{pmatrix}$

Def Let (M, ω) be a symplectic manifold and $\int a$ compatible almost complex structure. The triple (M,w,J) is a quasi-kähler manifold

-ai (14m) de la ayrepection resultate aux just compt almost complex structure. The triple (M,w,J) is a quasi-kähler manifold If J is integrable, (M, w, J) is a Kähler manifold.

Quasi-Kähler manifold are relevant as all symplectic manifolds can be given a compatible almost complex structure. This follows from contractibility of J(M) However there are examples of non-kittler symplectic manifolds.

$$
\frac{Def}{\sigma r} A \text{ map } \phi : (S^2, i) \longrightarrow (P, j) \text{ is a pseudo-holomorphic curve if } \phi_{*0} i = j \circ \phi_{*}
$$
\n
$$
\overline{\sigma} \phi := \frac{1}{2} (\phi_{*} + j \circ \phi_{*} \circ i) = 0
$$

The deformation problem Let (P, ω) be a closed symplectic manifold and C a ray in $H^2(P, \mathbb{R})$ with origin at [w]. Hove for can one deform weith symplectic structures on P s.t [w] moves on e^2

Weak coupling construction

For EDO sufficiently small, there exists a smooth family of closed 2-forms w_t st on P (te (o,t)) st

- \cdot $w_0 = \rho^* \mathcal{C}$. $[w_{t}] = tc + p^{*}[r]$ $\omega_t|_{finter} = f \Omega_x$
- . w_t symplectic for all $t>0$

We see that $\rho^*[x]$ is degenerate, but for $t>0$ $t₀$ $e^*[x]$ is Denote $\epsilon(\rho)$ = sup ϵ . We construct an example value $\epsilon(\rho)$ < co

Homological intermezzo

The cohomology groups H"(P) can be turned into rings by means of the cup $product :$

$$
0: H^{s}(P) \times H^{t}(P) \longrightarrow H^{s+t}(P) \longrightarrow \alpha \cup B
$$

This is a bilivear operation that respects the grading.

We also need Poincare duality: for a closed oriented manifold P

$$
H^{\circ}(P) \cong H_{n-p}(P)
$$
 $\forall p \in \mathbb{N}_{o}$

P is symplectic in our case so it is orientable. The Poincare dual of the cup product is the intersection product If $\alpha \in H^{s}(\rho)$, $\beta \in H^{t}(\rho)$ and the duals are $A \in H_{n-s}(\rho)$, $B \in H_{n-t}(\rho)$ $\alpha \cup \beta \in H^{s+t}(P)$ $(A, B) \in H_{n-(s+t)}(P)$

With the intersection product, homology on a manifold becomes a ring. Assume now that P is connected: $H^o(P) \cong \mathbb{Z}$ We define [P], the fundamental class of N, as the unique element of $H_n(P)$ that is sent to 1 under Poincare duality: $\Phi(P) = 1$ If $N \subseteq M$ is a submanifold of M, the inclusion $c : N \longrightarrow M$ induces a homorphism $i_* : H_n(N) \longrightarrow H_n(M)$. Then $i_{*}([N]) \in H_{n}(M)$ is called the class of N in M Let $p,q = t$ $p + q =$ $dmM = 1m$ and $A \in H_{\rho}(M) \implies A^* \in H^9(M) \implies A^* \cup B^* \in H^m(M)$ $B \in H_q(M) \implies B^* \in H^{\circ}(M)$ $(A, B) = (A^* \cup B^*)^* \in H_0(M) \cong \mathbb{Z}$ This is called intersection index of A and B. If $dim N = \frac{1}{2} dim M$, (DN) , (DN) is called intersection index of N

If
$$
dmN = \frac{1}{2} \sin M
$$
, ([N], [N]) is called intercation index of N
\nThe intresedion product counts. He number of intercedion (with orientation).
\nLet let P⁴ be a 4-time symplectic manifold and Σ a sympletic embedding.
\n2 - inhom. If ([Σ], [Σ]) = -1, we call Σ an excapional shape
\n $\frac{1}{2}$ lim 10.1 Let Σ c (P¹)₀ be an excapional slope and we a Alprination of
\nsymplectic form (46 [0,1]). Then ([ω_0], Σ) > 0
\n
\nArlication to coupling deformation for the firstation P(T₀C) \rightarrow CP¹,
\nwhere T and C one the tautological and trivial bundle respectively.
\nLet [F] be the class of the (for $\omega_0 \Sigma$ be the action corresponding to
\nthe rank 4 subbulte 0 a C.
\nSince for b \pm c $P^*(b) \cap P^*(c) = \beta$ and all there fiber are homologous,
\n \pm follows ([F], [F]) = 0. Also ([F], [Z]) = -1
\n
\nIf can be shown that ([Σ], [E]) = -1
\nLet ω_c be a coupling deformation. By *Hoss's theorem*, for t small ω_c
\nis symplectic normal, the Σ is symplectic and subulued. Together with ([Σ], [Z]) = -1
\n
\nHint implies that Σ is an exceptional sphere.
\nBy theorem 10.1.1, ([ω_0], [Z]) > 0. If e [0,1]
\nRecall [W₀] = P^{*} [E⁺ +C_c, where [C] be H₂(S²,Z) is a generator and
\nc is He coupling class.
\nUsing Poincare duality, we identify homology and cohomology and set the following
\nrelations:
\n $(P^*(E), [F]) = 0$

 \overline{A}

$$
\{c. \text{[F]}\} = 1 \qquad c^2 - 0
$$

$$
(P^*[z], [F]) = 0 \t(e^*[z], [Z]) = 1
$$
\n
$$
(c, [F]) = 1 \t c^2 = 0
$$
\nThe generators of $H_4(S^2, Z)$ are $[F]$ and $[Z]$. These relations define $P^*[Z]$ and $[Z]$ uniquely.

\n
$$
P^*[E] = \alpha [F] + \beta [Z] \t c = \gamma [F] + \delta [Z]
$$
\n
$$
0 = \alpha ([F], [F]) + \beta ([Z], [F]) = \beta
$$
\n
$$
1 = (P^*[E], [Z]) = \alpha ([F], [Z]) = \alpha \Rightarrow P^*[E] = [F]
$$
\n
$$
1 = (c, [F]) = \gamma ([E], [F]) + \delta ([Z], [F]) = \delta
$$
\n
$$
0 = (c, c) = \gamma^2 ([F], [F]) + 2\gamma ([F], [Z]) + ([Z], [Z]) = 2\gamma - 1 \Leftrightarrow \gamma - \frac{1}{2}
$$
\nTherefore

\n
$$
c = [Z] + \frac{1}{2}[F]
$$

$$
B_{\gamma} \text{ using } \text{Thm } 10.1A, \text{ if } \text{follows}
$$
\n
$$
0 < \left(\left[w_{\epsilon} \right], \left[\Sigma \right] \right) = \left(\left[F \right] + t \left[\Sigma \right] + \frac{t}{2} \left[F \right], \left[\Sigma \right] \right)
$$
\n
$$
= \left(\left[F \right], \left[\Sigma \right] \right) + t \left(\left[\Sigma \right], \left[\Sigma \right] \right) + \frac{t}{2} \left(\left[F \right], \left[\Sigma \right] \right)
$$
\n
$$
= 1 - t + \frac{t}{2}
$$
\n
$$
\Rightarrow t < 2
$$

This is true for all weak deformations, so $E(P) < 2$. This completes the proof

Proprieties of pseudo-holomorphic curves Let (P^{2n}, w) a symplectic manifold and $A \in H_2(P, \mathbb{Z})$ a primitive class $(\vec{a} \in H_2(P, \mathbb{Z})$ and $k > 1$ integer st $A = k \cdot B$). In particular $A \neq 0$. Let $\mathfrak{T} = \{ \mathfrak{T} : \mathsf{TP} \rightarrow \mathsf{TP} \mid \mathfrak{T}^2 = -11 \text{ and } \mathfrak{T} \text{ is } w\text{-comparable} \}$ and $\mathcal{N} := \left\{ f \in C^{\infty}(\mathcal{S}^{z}, P) \mid [f] = A \right\}.$ Then $\mathcal{X} = \left\{ (f, j) \in \mathcal{N} \times \mathcal{T} \mid \overline{B_j} f = 0 \right\}$. \mathcal{X} is a smooth manifold and Then $\mathcal{X} = \left\{ (f, j) \in \mathcal{N} \times \mathcal{T} \mid \overline{Q_j} f = 0 \right\}$. \mathcal{X} is a smooth manifold and the projection $\pi : \mathcal{X} \longrightarrow \mathcal{J}$ is a Fredholm operator.

 $\int_{u} \mathcal{L} \cdot dv \times \pi_{*} = \dim \ker \pi_{*} = \dim \operatorname{coker} \pi_{*} = 2(c_1(A) + b)$ Let jo, in regular values of π . So $\pi^{-1}($ jo), $\pi^{-1}($ ja) are smooth submanifold. If ζ is a pact from jo to jn, $\pi^{-1}(z)$ is a smooth submanifold of divension $\text{Index}(\pi) + 1$ and $\text{Tr}^1(\gamma) = \pi^{-1}(\gamma) - \pi^{-1}(\gamma)$.

Key point: let $PSL(2, \mathbb{C})$ be the group of conformal transformations of (S^2, i) If he PSL(2,6) and (f_i) $\in \pi^{-1}(j)$, also $(f \circ h, j) \in \pi^{-1}(j)$ $T^{-1}(8)$ can't be compact as it admits the action of the non-compact grove $PSL(Z)$.

This (Group) Either $\pi^{-1}(8)/\rho_{SL(2,\mathbb{C})}$ is compact or there exists a family $(f_{k}, j_{k}) \in \pi^{-1}(g)$ st. $j_{k} \rightarrow j_{00}$ and f_{k} converges to a j_{00} -holomorphic cusp curve in the class A . Write $A = \sum_{i=1}^{6} A_i$ and $\phi_{i} = S^2 \rightarrow P$ are j-holomorphic curves in A;. The union $\bigcup_{i=1}^{\infty} \varphi_i(A_i)$ is the image of the cusp curve, usually assumed to be connected.

Imagine nove the following:

. The set $J' \subseteq J'$ of all i that generate cusp curves has codinension at least 2 . je $J\setminus J'$ is a regular value and $\pi^{-1}(j_0)/\rho_{SL(2,\mathbb{C})}$ does not bound a compact manifold.

Then $\forall j_1 \in \Im \setminus \Im'$, $\pi^{-1}(j_1) / \rho_{SL(2,6)} \neq \emptyset$. Indeed, suppose the cuntrary and join jo and jo by a pact of. Then $\Omega(\pi^{-1}(r)/\rho_{SL(2,\mathbb{C})}) = \pi^{-1}(s)/\rho_{SL(2,\mathbb{C})}$ But from Gromov's theorem, $\pi^{-1}(8)/\rho_{SL(2,6)}$ is compact. This contradicts the second assumption.

<u>Posistence</u> of exceptional spheres

We sketch a proof for 10.1A Let (P^4, w) be a symplectic manifold and $\sum c(P^4, w)$ be an exceptional sphere with $A = [\Sigma]$. Let w_t ($te(o, a)$) be a deformation of $w = w_o$

 $Step 1: choose a j_o that is w-compaible and extend to a family is$ that is w_{t} -compatible

Step 2: If holds
$$
\text{Index } \pi = 2(c_1(A) + n) = 2(1 + 2) = 6
$$

\nSince $d_{\text{img}} \text{PSL}(2, c) = 6$, d_{follows} that if so is regular

\n $d_{\text{img}}(\pi^{-1}(\text{so})/\text{PSL}(2, c)) = 0$

Step 3 In dimension 4, two different germs of j-holomorphic curves always intersect with positive index at common points. Assure Σ^1 is another curve in A . Then

$$
(\Sigma J, \Sigma J) = (\Sigma J, \Sigma J) = -1 \n\leq \n\pi^{-1} \text{ (i) } \text{ (b) } \text{ (b) } \text{ (c) } \text{ (c) } \text{ (d) } \text{ (e) } \text{ (f) } \text{ (g) } \text{ (h) } \text{ (i) } \text{ (j) } \text{ (j) } \text{ (j) } \text{ (k) } \text{ (l) } \text{ (l)
$$

Step 4 Choose
$$
j_{o_1} = \text{regular}
$$
. We claim that no cusp curve appear generally

\nSet

\n
$$
A = \sum_{i=1}^{J} A_i \implies c_1(A) = \sum_{i=1}^{J} c_1(A_i) = 1
$$
\nThus at least one Open class is non-positive. WLOG let it be $c_1(A)$

\n
$$
\dim \pi_{A_1}^{-1}(x)/\rho_{SL}(2, c) = 2(c_1(A_1) + 2) - 6 + 1 \le -1
$$
\nGeverically no **bothling** of **happens**. Thus A is represented by a $j e^{-h_0}$.

\nBy compactness $(\{\omega_{t}\}, \{\Sigma\}) > 0$ $\forall t \in [0, 1]$.