Midterm exam

1. Area enclosed by two curves

Let $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
f(x)=x^{3}-x, \quad \text { and } \quad g(x)=x^{2}-1
$$

(a) Determine the points $x_{1}<x_{2}$ in which the graphs of f and g intersect.
(b) Compute the area that is enclosed by the graphs of f and g between x_{1} and x_{2}.

2. Complex numbers

Using complex numbers, verify that for any $x \in \mathbb{R}$

$$
\cos (3 x)=\cos (x)\left(4 \cos ^{2}(x)-3\right)
$$

3. First order differential equation

Find the constant C and the solution $y(x)$ of the differential equation

$$
y^{\prime}+x y+C x=0
$$

such that $y(0)=0$ and $y(\sqrt{2})=\frac{1}{e}-1$.
4. Linear differential equation with constant coefficients

Find the solution $y(x)$ of the differential equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=\sin (x)
$$

that satisfies the initial conditions $y(0)=\frac{1}{5}$ and $y^{\prime}(0)=1$.

