Solutions Midterm exam

1. The graph of the functions is

(a) We have to find $x_{i}, i=1,2$, such that $f\left(x_{i}\right)=g\left(x_{i}\right)$.

$$
\begin{aligned}
f(x)-g(x) & =x^{3}-x-\left(x^{2}-1\right) \\
& =x\left(x^{2}-1\right)-\left(x^{2}-1\right) \\
& =(x-1) \underbrace{\left(x^{2}-1\right)}_{(x-1)(x+1)} \\
& =(x-1)^{2}(x+1) \\
& !
\end{aligned}
$$

This is satisfied for $x_{1}=-1$ and $x_{2}=1$.
We have $f\left(x_{1}\right)=f(-1)=0, g\left(x_{1}\right)=g(-1)=0, f\left(x_{2}\right)=f(1)=0$ and $g\left(x_{2}\right)=$ $g(1)=0$.
(b) We now have to determine if $f(x) \geqslant g(x)$ or $g(x) \geqslant f(x)$ on the interval $[-1,1]$. Since the functions f and g are continuous, we just need to check it in one point. Since $f(0)=0$ and $g(0)=-1$, we see that $f(x) \geqslant g(x)$ for $-1 \leqslant x \leqslant 1$.

Another argument uses the derivative. Indeed $f^{\prime}(x)=3 x^{2}-1$ and $g^{\prime}(x)=2 x$. Hence

$$
f^{\prime}(-1)=2>-2=g^{\prime}(-1)
$$

and this means that $f(x) \geq g(x)$ for $-1 \leqslant x \leqslant 1$.
The area enclosed by the curves is given by the following integral.

$$
\begin{aligned}
\int_{-1}^{1} f(x)-g(x) d x & =\int_{-1}^{1} x^{3}-x-x^{2}+1 d x \\
& =\left[\frac{1}{4} x^{4}-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}+x\right]_{-1}^{1} \\
& =\frac{1}{4}-\frac{1}{2}-\frac{1}{3}+1-\left(\frac{1}{4}-\frac{1}{2}+\frac{1}{3}-1\right) \\
& =-\frac{2}{3}+2=\frac{4}{3}
\end{aligned}
$$

2. We know that

$$
e^{i x}=\cos (x)+i \sin (x)
$$

Comparing the real part of

$$
\left(e^{i x}\right)^{3}=e^{i 3 x}=\cos (3 x)+i \sin (3 x)
$$

and

$$
\begin{aligned}
\left(e^{i x}\right)^{3} & =(\cos (x)+i \sin (x))^{3} \\
& =\cos ^{3}(x)+3 i \cos ^{2}(x) \sin (x)-3 \cos (x) \sin ^{2}(x)-i \sin ^{3}(x) \\
& =\cos ^{3}(x)-3 \cos (x) \sin ^{2}(x)+i\left(3 \cos ^{2}(x) \sin (x)-\sin ^{3}(x)\right)
\end{aligned}
$$

we get

$$
\begin{aligned}
\cos (3 x) & =\cos ^{3}(x)-3 \cos (x) \sin ^{2}(x) \\
& =\cos ^{3}(x)-3 \cos (x)\left(1-\cos ^{2}(x)\right) \\
& =4 \cos ^{3}(x)-3 \cos (x) \\
& =\cos (x)\left(4 \cos ^{2}(x)-3\right) .
\end{aligned}
$$

Remark:

$$
\begin{aligned}
\sin (3 x) & =3 \cos ^{2}(x) \sin (x)-\sin ^{3}(x) \\
& =3 \sin (x)\left(1-\sin ^{2}(x)\right)-\sin ^{3}(x) \\
& =\sin (x)\left(3-4 \sin ^{2}(x)\right)
\end{aligned}
$$

3. By separating variables, we get

$$
\begin{aligned}
& y^{\prime}+x y+C x=0 \\
\Longleftrightarrow & y^{\prime}+x(y+C)=0 \\
\Longleftrightarrow & y^{\prime}=-x(y+C) \\
\Longleftrightarrow & -y^{\prime}=x(y+C) \\
\Longleftrightarrow & -\frac{\mathrm{d} y}{\mathrm{~d} x}=x(y+C) \\
\Longleftrightarrow & -\frac{\mathrm{d} y}{y+C}=x \mathrm{~d} x \\
\Longleftrightarrow & -\int \frac{\mathrm{d} y}{y+C}=\int x \mathrm{~d} x \\
\Longleftrightarrow & -\ln (|y+C|)=\frac{1}{2} x^{2}+C_{1} \text { for some } C_{1} \in \mathbb{R} \\
\Longleftrightarrow & \ln (|y+C|)=-\frac{1}{2} x^{2}-C_{1} \text { for some } C_{1} \in \mathbb{R} \\
\Longleftrightarrow & |y+C|=C_{2} e^{-\frac{1}{2} x^{2}} \text { for some } C_{2} \in \mathbb{R}^{+} \\
\Longleftrightarrow & y(x)=-C+C_{2} e^{-\frac{1}{2} x^{2}} \text { for some } C_{2} \in \mathbb{R} .
\end{aligned}
$$

The two conditions

$$
\begin{gathered}
0=y(0)=-C+C_{2} e^{-\frac{1}{2} 0^{2}}=-C+C_{2} \Longleftrightarrow C=C_{2} \\
0=y(\sqrt{2})+1-\frac{1}{e}=-C+C_{2} e^{-\frac{1}{2} \sqrt{2}^{2}}+1-\frac{1}{e}=1-C+\frac{C_{2}-1}{e}=1-C+\frac{C-1}{e},
\end{gathered}
$$

imply that

$$
C=C_{2}=1
$$

The solution to the differential equation

$$
y^{\prime}+x y+x=0
$$

with the searched constant $C=1$ and $y(0)=y(\sqrt{2})+1-\frac{1}{e}=0$, is therefore given by

$$
y(x)=e^{-\frac{1}{2} x^{2}}-1
$$

4. We first determine the general solution of the homogeneous equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0 .
$$

The zeros of the characteristic polynomial $\lambda^{2}-4 \lambda+4$ are

$$
\lambda_{1,2}=\frac{4 \pm \sqrt{16-16}}{2}=2 .
$$

Hence the solution is

$$
y_{h}(x)=C_{1} x e^{2 x}+C_{2} e^{2 x} .
$$

For the particular solution of the inhomogeneous equation we guess

$$
y_{p}(x)=A \cos (x)+B \sin (x)
$$

Then

$$
\begin{aligned}
y_{p}^{\prime}(x) & =-A \sin (x)+B \cos (x) \\
y_{p}^{\prime \prime}(x) & =-A \cos (x)-B \sin (x)
\end{aligned}
$$

and

$$
\begin{aligned}
& y^{\prime \prime}-4 y^{\prime}+4 y=-A \cos (x)-B \sin (x) \\
& \quad-4(-A \sin (x)+B \cos (x)) \\
&+4(A \cos (x)+B \sin (x)) \\
&=(3 A-4 B) \cos (x)+(4 A+3 B) \sin (x) \\
& \stackrel{!}{=} \sin (x)
\end{aligned}
$$

Hence we solve

$$
\begin{aligned}
& 3 A-4 B=0 \\
& 4 A+3 B=1
\end{aligned}
$$

and get

$$
A=\frac{4}{25} \text { and } B=\frac{3}{25}
$$

The particular solution of the inhomogeneous equation is

$$
y_{p}(x)=\frac{4}{25} \cos (x)+\frac{3}{25} \sin (x)
$$

and the general solution is

$$
y(x)=C_{1} x e^{2 x}+C_{2} e^{2 x}+\frac{4}{25} \cos (x)+\frac{3}{25} \sin (x)
$$

The initial conditions determine the constants C_{1} and C_{2}. First we compute

$$
y^{\prime}(x)=C_{1}(1+2 x) e^{2 x}+2 C_{2} e^{2 x}-\frac{4}{25} \sin (x)+\frac{3}{25} \cos (x) .
$$

We solve

$$
\begin{aligned}
y(0) & =C_{2}+\frac{4}{25} \stackrel{!}{=} \frac{1}{5} \\
y^{\prime}(0) & =C_{1}+2 C_{2}+\frac{3}{25} \stackrel{!}{=} 1
\end{aligned}
$$

and get $C_{2}=\frac{1}{25}, C_{1}=\frac{4}{5}$. The solution is

$$
y(x)=\frac{4}{5} x e^{2 x}+\frac{1}{25} e^{2 x}+\frac{4}{25} \cos (x)+\frac{3}{25} \sin (x)
$$

