1. Area enclosed by two curves

Let $f : \mathbb{R} \to \mathbb{R}, g : \mathbb{R} \to \mathbb{R}$ such that

 $f(x) = x^3 - x^2 - 4x + 2$, and $g(x) = x^2 - 3x$.

- (a) Determine the points $x_1 < x_2 < x_3 \in \mathbb{R}$ in which the graphs of f and g intersect.
- (b) Compute the area that is enclosed by the graphs of f and g between x_1 and x_3 .

Hint: It may help to multiply (x + 1)(x - 1)(x - 2) =: h(x).

2. Extrema

Consider the function

$$f: [-1,1] \to \mathbb{R}: \quad f(x) = x^2 \left(\frac{1}{4}x^2 + \frac{1}{3}x - 1\right).$$

For which $x \in [-1, 1]$ is f(x) minimized and for which x is it maximized?

3. Complex numbers

Find all the solutions of the equation

$$z^5 = 4(1+i)$$
.

4. First order differential equation

Find the solution x(t) of the differential equation

 $x' = 2x \, te^t$

subject to the condition that x = 1 when t = 0.