1. Area enclosed by two curves

Let $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x)=x^{3}-x^{2}-4 x+2, \quad \text { and } \quad g(x)=x^{2}-3 x .
$$

(a) Determine the points $x_{1}<x_{2}<x_{3} \in \mathbb{R}$ in which the graphs of f and g intersect.
(b) Compute the area that is enclosed by the graphs of f and g between x_{1} and x_{3}.

Hint: It may help to multiply $(x+1)(x-1)(x-2)=: h(x)$.

2. Extrema

Consider the function

$$
f:[-1,1] \rightarrow \mathbb{R}: \quad f(x)=x^{2}\left(\frac{1}{4} x^{2}+\frac{1}{3} x-1\right)
$$

For which $x \in[-1,1]$ is $f(x)$ minimized and for which x is it maximized?

3. Complex numbers

Find all the solutions of the equation

$$
z^{5}=4(1+i) .
$$

4. First order differential equation

Find the solution $x(t)$ of the differential equation

$$
x^{\prime}=2 x t e^{t}
$$

subject to the condition that $x=1$ when $t=0$.

