Midterm exam

1. Consider the function

$$
f:[-1,1] \rightarrow \mathbb{R}: \quad f(x)=x^{2}\left(\frac{1}{4} x^{2}-\frac{1}{3} x-1\right)
$$

For which $x \in[-1,1]$ is $f(x)$ minimized and for which x is it maximized? Sketch the function on the interval $[-1,1]$, paying special attention to the local extrema.

Solution:

$$
f^{\prime}(x)=x^{3}-x^{2}-2 x=x(x+1)(x-2)
$$

so the stationary points in the domain are at $x=-1$ and $x=0$. We also need to check the boundary point $x=1$. We have $f(-1)=-5 / 12, f(0)=0$ and $f(1)=-13 / 12$. Therefore the minimum is attained at $x=1$ and the maximum is attained at $x=0$.
2. (a) What is

$$
\begin{aligned}
& \qquad \frac{\mathrm{d}}{\mathrm{~d} t} F(x(t), y(t)) \text { at } t=0 \\
& \text { if } x(0)=2, y(0)=5, x_{t}(0)=-3, y_{t}(0)=7, F_{x}(2,5)=8 \text { and } \\
& F_{y}(2,5)=2 \text { ? }
\end{aligned}
$$

Note that here we are using the notation $F_{x}=\frac{\partial F}{\partial x}$ which is more convenient when we have to evaluate the derivatives at a specific point.
(b) Denote $g(t)=F(x(t), y(t))$. Let $F(2,5)=2$. Determine the tangent line to the function g at $t=0$.
Solution. $F_{t}(0)=8 \cdot(-3)+2 \cdot 7=-10$.
Since $g(0)=F(2,5)=2$, the tangent at $t=0$ is $y=-10 x+2$.
3. (a) Parametrise the curve $x^{2 / 3}+y^{2 / 3}=1$ from $\left(\frac{1}{8}, \frac{3 \sqrt{3}}{8}\right)$ to $(1,0)$.
(b) Compute the length of the curve $x^{2 / 3}+y^{2 / 3}=1$ from $\left(\frac{1}{8}, \frac{3 \sqrt{3}}{8}\right)$ to (1,0).

Solution. One possible parametrisation is $\vec{r}(t)=\left(\cos ^{3} t, \sin ^{3} t\right)$ with $t \in$ $\left[\frac{\pi}{3}, 0\right]$. (How did we get the endpoints? We solved the equations $\cos t_{0}=\frac{1}{2}$ and $\cos t_{1}=1$, and checked that the y-coordinate is correct.)

Let's compute the speed:

$$
\begin{aligned}
\dot{\vec{r}}(t) & =\left(-3 \cos ^{2} t \sin t, 3 \sin ^{2} t \cos t\right), \\
|\dot{\vec{r}}(t)| & =\sqrt{9 \cos ^{4} t \sin ^{2} t+9 \sin ^{2} t \cos ^{2} t} \quad=\sqrt{9 \cos ^{2} t \sin ^{2} t} \\
& =3 \cos t \sin t
\end{aligned}
$$

Integrating,

$$
\begin{aligned}
L & =\int_{\frac{\pi}{3}}^{0} 3 \cos t \sin t \mathrm{~d} t \\
& =\frac{3}{2}\left[-\cos ^{2}(t)\right]_{\frac{\pi}{3}}^{0} \\
& =\frac{3}{2}\left(-1+\frac{1}{4}\right)=-\frac{9}{8} .
\end{aligned}
$$

The negative result just says that we were integrating in the wrong direction, so the length is actually $\frac{9}{8}$.
Alternatively, we can use the formula $2 \cos t \sin t=\sin (2 t)$ to get

$$
\begin{aligned}
L & =\int_{\frac{\pi}{3}}^{0} \frac{3}{2} \sin (2 t) \mathrm{d} t \\
& =\frac{3}{4}[-\cos (2 t)]_{\frac{\pi}{3}}^{0} \\
& =\frac{3}{4}\left(-1-\frac{1}{2}\right)=-\frac{9}{8} .
\end{aligned}
$$

4. Find the solution $y(x)$ of the differential equation

$$
\frac{d y}{d x}+y \tan x=0
$$

satisfying the initial condition $y\left(\frac{\pi}{3}\right)=4$.
Solution. Separating variables, we get $\frac{d y}{y}=-\tan x d x$.
Integration gives the general solution $\ln y=\ln (\cos x)+c$, i.e. (after exponentiating and setting $e^{c}=A$),

$$
y=A \cos x
$$

Introducing the initial condition, $y\left(\frac{\pi}{3}\right)=4=A \cdot \frac{1}{2}$, we fix the constant $A=8$. The particular solution is therefore

$$
y=8 \cos x
$$

