LINEAR (IN)DEPENDENCE, MATRICES AND DETERMINANT

1. For what values of parameter t is the following matrix invertible? If so, determine its inverse.

$$
\left(\begin{array}{lll}
1 & 0 & t \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

2. (a) Let $\vec{v}_{1}=(3,0), \vec{v}_{2}=(1,2), \vec{v}_{3}=(2,1)$ be vectors in \mathbb{R}^{2}.

Are \vec{v}_{1}, \vec{v}_{2} linearly dependent? Justify your answer algebraically.
What about $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$?
(b) Look at the drawing of the three vectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ in the $x y$-plane. Try to answer 1.(a) geometrically, with no reference to the values of $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$.

3. (a) Are the following vectors linearly dependent or linearly independent?

- $(1,1,1)$ and $(0,1,-2)$,
- $(1,1,1),(1,1,0)$ and $(0,0,-1)$,
- $(1,1,1),(1,1,0)$ and $(1,0,-1)$.
(b) For which values of $t \in \mathbb{R}$ are the vectors

$$
(1,1,1),(1,1,0) \text { and }(t, 0,-1)
$$

linearly dependent?
4. An $n \times n$ matrix is called nilpotent if $A^{m}=0$ for some positive integer m.
(a) Find an example of a nilpotent 3×3 matrix.
(b) Consider a non zero nilpotent matrix A, and denote by m the smallest integer for which the nilpotency condition is satisfied. Let $\vec{x} \in \mathbb{R}^{n}$ be a vector such that $A^{m-1} \vec{x} \neq 0$. Show that the vectors $\vec{x}, A^{1} \vec{x}, A^{2} \vec{x}, \cdots, A^{m-1} \vec{x}$ are all linearly independent.
5. If possible, compute the following matrix products:
(a) $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$,
(b) $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$,
(c) $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$
(d) $\left(\begin{array}{cc}1 & -1 \\ 0 & 2 \\ 2 & 1\end{array}\right)\left(\begin{array}{ll}3 & 2 \\ 1 & 0\end{array}\right)$,
(e) $\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & k\end{array}\right)\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$,
(f) $\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
6. (a) By setting up an appropriate system of linear equations, find all vectors $\vec{x} \in \mathbb{R}^{2}$ such that $A \vec{x}=\vec{b}$ for

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right), \quad \vec{b}=\binom{2}{1}
$$

(b) Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2-matrix and $a d-b c \neq 0$. Derive a formula for the inverse of A by using the standard procedure for inverting matrices. Consider the cases $a \neq 0$ and $a=0$ separately.
(c) Use the formula in (b) to compute \vec{x} in (a).
7. The goal of this exercise is to give a geometric interpretation of the linear transformations defined by the matrices

$$
A=\left(\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right), \quad B=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right), \quad C=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Start by showing the effect of these transformations on the letter L:

In each case, decide whether the transformation is invertible. Find the inverse if it exists, and interpret it geometrically.
8. Compute the determinants of the following matrices.

$$
\text { (a) } A=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
0 & 5 & 6 & 7 \\
0 & 0 & 8 & 9 \\
0 & 0 & 0 & 3
\end{array}\right) \quad \text { (b) } B=\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 4 & 6 & 8 \\
1 & 1 & 2 & 2 \\
3 & 3 & 4 & 4
\end{array}\right)
$$

9. Compute the derivative of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\operatorname{det}\left[\left(\begin{array}{ccccc}
1 & 1 & 2 & 3 & 4 \\
9 & 0 & 2 & 3 & 4 \\
9 & 0 & 0 & 3 & 4 \\
x & 1 & 2 & 9 & 1 \\
7 & 0 & 0 & 0 & 4
\end{array}\right)\right]
$$

10. In the basis $\mathcal{B}=\left\{\binom{1}{1},\binom{1}{-1}\right\}$, find the matrix M that represents the linear transformation $f_{1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined in the standard basis by

$$
f_{1}(\vec{x})=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \vec{x} .
$$

