COMPLEX NUMBERS

1. Write the following expressions in the form x + iy, with $x, y \in \mathbb{R}$.

(a)
$$(3+5i)^2$$
 (b) $(-7+2i)(5-3i)$ (c) $|2+i|$
(d) $\frac{i-1}{1+i}$ (e) $\frac{1-5i}{3i-1}$ (f) $\frac{1-i}{1+i}+2-i$

- 2. Write the expressions -5 + i and 2 3i in polar form $re^{i\varphi}$.
- 3. Find all solutions of the following equations:
 - (a) $z^2 + 4z + 12 6i = 0$, (b) $z^6 = -4\sqrt{3} - 4i$, (c) $z^5 = (1+i)(-1+\sqrt{3}i)(\sqrt{3}-i)$.
- 4. Sketch the set of all $z \in \mathbb{C}$ satisfying the following conditions:
 - (a) Re z > 2, (b) |z| < 3, (c) |z 1| < |z + 1|.
- 5. For a complex number $z = re^{i\varphi}$, the angle φ is the *argument* of z, and we write $\varphi = \arg z$. This representation is unique if $\varphi \in (-\pi, \pi]$, in which case φ is referred to as the *principal value* of $\arg z$. We get the same point if we replace φ by $\varphi + 2n\pi$, $n \in \mathbb{Z}$.
 - (a) Let $r, s, \vartheta, \varphi \in \mathbb{R}$ with r, s > 0, and set

 $z = r(\cos \vartheta + i \sin \vartheta), \quad w = s(\cos \varphi + i \sin \varphi).$

Compute the product $z \cdot w$ and use the formulae for $\sin(\vartheta + \varphi), \cos(\vartheta + \varphi)$ to deduce that

$$\arg(z \cdot w) = \arg z + \arg w.$$

Here, $\arg z_1 = \arg z_2$ if the principal argument of z_1 differs from that of z_2 by a multiple of 2π .

(b) By induction on $n \in \mathbb{N}$, prove De Moivre's Theorem:

$$(\cos\varphi + i\sin\varphi)^n = \cos n\varphi + i\sin n\varphi.$$

- (c) Use De Moivre's Theorem to derive the formulae for $\cos 3\varphi$ and $\sin 3\varphi$ in terms of $\cos \varphi$ and $\sin \varphi$.
- 6. (a) Compute the square roots of z = -1 i,
 - (b) Compute the cube roots of z = -8
- 7. Find all $z \in \mathbb{C}$ such that $z^2 \in \mathbb{R}$