COMPLEX NUMBERS

1. Write the following expressions in the form $x+i y$, with $x, y \in \mathbb{R}$.
(a) $(3+5 i)^{2}$
(b) $(-7+2 i)(5-3 i)$
(c) $|2+i|$
(d) $\frac{i-1}{1+i}$
(e) $\frac{1-5 i}{3 i-1}$
(f) $\frac{1-i}{1+i}+2-i$
2. Write the expressions $-5+i$ and $2-3 i$ in polar form $r e^{i \varphi}$.
3. Find all solutions of the following equations:
(a) $z^{2}+4 z+12-6 i=0$,
(b) $z^{6}=-4 \sqrt{3}-4 i$,
(c) $z^{5}=(1+i)(-1+\sqrt{3} i)(\sqrt{3}-i)$.
4. Sketch the set of all $z \in \mathbb{C}$ satisfying the following conditions:
(a) $\operatorname{Re} z>2$,
(b) $|z|<3$,
(c) $|z-1|<|z+1|$.
5. For a complex number $z=r e^{i \varphi}$, the angle φ is the argument of z, and we write $\varphi=\arg z$. This representation is unique if $\varphi \in(-\pi, \pi]$, in which case φ is referred to as the principal value of $\arg z$. We get the same point if we replace φ by $\varphi+2 n \pi, n \in \mathbb{Z}$.
(a) Let $r, s, \vartheta, \varphi \in \mathbb{R}$ with $r, s>0$, and set

$$
z=r(\cos \vartheta+i \sin \vartheta), \quad w=s(\cos \varphi+i \sin \varphi)
$$

Compute the product $z \cdot w$ and use the formulae for $\sin (\vartheta+\varphi), \cos (\vartheta+\varphi)$ to deduce that

$$
\arg (z \cdot w)=\arg z+\arg w
$$

Here, $\arg z_{1}=\arg z_{2}$ if the principal argument of z_{1} differs from that of z_{2} by a multiple of 2π.
(b) By induction on $n \in \mathbb{N}$, prove De Moivre's Theorem:

$$
(\cos \varphi+i \sin \varphi)^{n}=\cos n \varphi+i \sin n \varphi
$$

(c) Use De Moivre's Theorem to derive the formulae for $\cos 3 \varphi$ and $\sin 3 \varphi$ in terms of $\cos \varphi$ and $\sin \varphi$.
6. (a) Compute the square roots of $z=-1-i$,
(b) Compute the cube roots of $z=-8$
7. Find all $z \in \mathbb{C}$ such that $z^{2} \in \mathbb{R}$

