DIFFERENTIAL MULTIVARIABLE CALCULUS

1. For the following functions, first determine the most efficient way of comput$\operatorname{ing} f_{x y}=f_{y x}$ and then differentiate accordingly: should you differentiate with respect to x or to y first?
(a) $f(x, y)=x \sin (y)+e^{y}$,
(b) $f(x, y)=\frac{1}{x}$,
(c) $f(x, y)=y+\frac{x}{y}$,
(d) $f(x, y)=y+x^{2} y+4 y^{3}-\ln \left(y^{2}+1\right)$,
(e) $f(x, y)=x^{2}+5 x y+\sin (x)+7 e^{x}$,
(f) $f(x, y)=x \ln (x y)$.
2. For each of the following functions, sketch a typical level curve.
(a) $f(x, y)=y^{2}$,
(b) $f(x, y)=1-|x|-|y|$,
(c) $f(x, y)=\sqrt{x^{2}+y^{2}-9}$.
3. For each of the following functions, compute the gradient $\nabla f(x, y)$.
(a) $f(x, y)=\sqrt{x^{2}+y^{2}-9}$,
(b) $f(x, y)=x y$,
(c) $f(x, y)=x^{3}+3\left(x^{2}-y^{2}\right)-3$.
4. Find the line that is tangent to the intersection of $z=\arctan (x y)$ with the plane $x=2$ at $(2,1 / 2, \pi / 4)$.
5. The lengths a, b, c of the edges of a rectangular box are changing with time. At some fixed time t_{0} we have $a=1, b=2, c=3$, and $\frac{d a}{d t}=\frac{d b}{d t}=1, \frac{d c}{d t}=-3$.

At what rates are the volume and the surface area of the box changing at t_{0} ? Are the interior diagonals of the box increasing or decreasing in length?
6. Let x, y be non-negative real numbers such that $x+y=12$. What is the minimum possible value of $x^{2} y$? For which values of x and y is this minimum attained?
7. Find the tangent plane and normal line to $x^{2}+y^{2}+z^{2}=30$ at the point $(1,-2,5)$.

