DIFFERENTIAL MULTIVARIABLE CALCULUS

- 1. For the following functions, first determine the most efficient way of computing $f_{xy} = f_{yx}$ and then differentiate accordingly: should you differentiate with respect to x or to y first?
 - (a) $f(x, y) = x \sin(y) + e^y$,
 - (b) $f(x, y) = \frac{1}{x}$,
 - (c) $f(x,y) = y + \frac{x}{y}$,
 - (d) $f(x,y) = y + x^2y + 4y^3 \ln(y^2 + 1),$
 - (e) $f(x,y) = x^2 + 5xy + \sin(x) + 7e^x$,
 - (f) $f(x,y) = x \ln(xy)$.
- 2. For each of the following functions, sketch a typical level curve.

(a)
$$f(x,y) = y^2$$
, (b) $f(x,y) = 1 - |x| - |y|$, (c) $f(x,y) = \sqrt{x^2 + y^2 - 9}$

3. For each of the following functions, compute the gradient $\nabla f(x, y)$.

(a)
$$f(x,y) = \sqrt{x^2 + y^2 - 9}$$
, (b) $f(x,y) = xy$, (c) $f(x,y) = x^3 + 3(x^2 - y^2) - 3x^3$

- 4. Find the line that is tangent to the intersection of $z = \arctan(xy)$ with the plane x = 2 at $(2, 1/2, \pi/4)$.
- 5. The lengths a, b, c of the edges of a rectangular box are changing with time. At some fixed time t_0 we have a = 1, b = 2, c = 3, and $\frac{da}{dt} = \frac{db}{dt} = 1, \frac{dc}{dt} = -3$.

At what rates are the volume and the surface area of the box changing at t_0 ? Are the interior diagonals of the box increasing or decreasing in length?

- 6. Let x, y be non-negative real numbers such that x+y = 12. What is the minimum possible value of x^2y ? For which values of x and y is this minimum attained?
- 7. Find the tangent plane and normal line to $x^2 + y^2 + z^2 = 30$ at the point (1, -2, 5).