PARTIAL DERIVATIVES AND DIFFERENTIAL EQUATIONS OF FIRST ORDER

1. Calculate dz/dt for each of the following functions:

(a)
$$z = f(x, y) = 4x^2 + 3y^2$$
, where $x = x(t) = \sin(t), y = y(t) = \cos(t)$,
(b) $z = f(x, y) = \sqrt{x^2 - y^2}, x = x(t) = e^{2t}, y = y(t) = e^{-t}$.

2. Calculate dz/du and dz/dv using the following functions:

$$z = f(x, y) = 3x^2 - 2xy + y^2,$$

where x = x(u, v) = 3u + 2v, y = y(u, v) = 4u - v.

- 3. Determine $D_{\overrightarrow{u}}f$ for $f(x,y) = \cos(xy)$ in the direction of $\overrightarrow{v} = (3,-4)$ where we recall that $\overrightarrow{u} = \overrightarrow{v}/|\overrightarrow{v}|$.
- 4. For each of the following differential equations, find the general solution and sketch the integral curves.

(a)

$$\frac{dy}{dx} = \frac{1}{\sqrt{1+x^2}},$$

(b)
 $\frac{dy}{dx} = \frac{4x}{(1+x^2)^{1/3}}.$

- 5. (a) Find all solutions of the differential equation y dx = x dy, and draw the integral curves in the plane.
 - (b) Describe geometrically (in words) the set of curves that are orthogonal to the integral curves.
 - (c) Describe these orthogonal curves algebraically, by providing appropriate equations. Check that they satisfy $\frac{dx}{dy} = -\frac{y}{x}$. Can you explain why this is to be expected?
- 6. A patient initially has 6 million bacteria in his system, before starting a penicillin treatment. After x days, the rate of change is proportional to the total number of million bacteria and $0.1 \cdot (4 2x)$.
 - (a) Find the total number of bacteria y(x) after x days.
 - (b) Sketch the graph of y(x) and explain the curve.
 - (c) Find the highest value of y(x) and when it occurs.