ORDINARY DIFFERENTIAL EQUATIONS

1. Let α be a real number and consider the initial value problem (IVP)

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=y^{\alpha}, \quad y(0)=0
$$

(a) Show that this IVP has no solution if $\alpha=1$.
(b) Determine the integral curve when $\alpha \neq 1$.
(c) Find the condition on α for which the system has a solution $y(x)$ defined for all $x \geq 0$. Can you find an α for which two solutions exist?
2. Solve the following second order differential equations:
(a) $2 y^{\prime \prime}+7 y^{\prime}=4 y$,
(b) $y^{\prime \prime}+2 y^{\prime}+y=0$,
(c) $y^{\prime \prime \prime}-y^{\prime \prime}-9 y^{\prime}+9 y=0$.
3. For which values of the parameter $\alpha \in \mathbb{R}$ does the differential equation

$$
y^{\prime \prime}+y^{\prime}-6 y=-2 \alpha e^{x}
$$

have solutions that are bounded for $x \rightarrow \infty$? Determine all these solutions.
4. Use complex variables to simultaneously find the general solutions of the two equations

$$
y_{a}^{\prime \prime}+2 y_{a}^{\prime}+2 y_{a}=\cos t, \quad y_{b}^{\prime \prime}+2 y_{b}^{\prime}+2 y_{b}=\sin t
$$

5. Determine the general solutions of the following differential equations:
(a) $y^{\prime \prime}+3 y^{\prime}+2 y=2 e^{-t}$,
(b) $y^{\prime \prime}+2 y^{\prime}+2 y=5 \cosh t$,
(c) $y^{\prime \prime}+3 y^{\prime}+2 y=2 \cosh t$.
6. Determine the solution of the differential equation

$$
y^{\prime}+\frac{2 x}{x^{2}+1} \cdot y=4 x
$$

that passes through the point $(x, y)=(1,3)$.
7. Solve the following first order differential equations.
(a) $y^{\prime}-y=\cos x$ subject to the initial condition $y(0)=0$.
(b) $y^{\prime}=5 x-\frac{3 y}{x}$ with initial condition $y(1)=2$.
(c) $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$, with no specified initial condition.

