DIFFERENTIAL CALCULUS

1. (a) Set $u:=x^{2}+1$ such that $\frac{d u}{d x}=2 x$.

$$
\int 2 x \sin \left(x^{2}+1\right) \mathrm{d} x=\int \sin u \mathrm{~d} u=-\cos u+C=-\cos \left(x^{2}+1\right)+C .
$$

(b) Set $u:=-10 x$ such that $\frac{d u}{d x}=-10$.

$$
\int e^{-10 x} \mathrm{~d} x=-\frac{1}{10} \int e^{u} \mathrm{~d} u=-\frac{e^{u}}{10}+C=-\frac{e^{-10 x}}{10}+C
$$

(c) Set $u:=5 x-\frac{\pi}{2}$ such that $\frac{d u}{d x}=5$.

$$
\int \cos \left(5 x-\frac{\pi}{2}\right) \mathrm{d} x=\frac{1}{5} \int \cos u \mathrm{~d} u=\frac{\sin u}{5}+C=\frac{\sin \left(5 x-\frac{\pi}{2}\right)}{5}+C .
$$

The definite integral from $x=0$ to $x=\frac{\pi}{5}$ therefore evaluates to

$$
\left.\frac{\sin \left(5 x-\frac{\pi}{2}\right)}{5}\right|_{x=0} ^{x=\pi / 5}=\frac{\sin \frac{\pi}{2}}{5}-\frac{\sin \frac{-\pi}{2}}{5}=\frac{2}{5}
$$

(d) Set $u:=-\sqrt{x+1}$ such that $\frac{d u}{d x}=-\frac{1}{2 \sqrt{x+1}}$.

$$
\int \frac{e^{-\sqrt{x+1}}}{\sqrt{x+1}} \mathrm{~d} x=-2 \int e^{u} \mathrm{~d} u=-2 e^{-\sqrt{x+1}}+C
$$

(e) Set $u:=x+3$ such that $\frac{d u}{d x}=1$.

$$
\int \frac{1}{x+3} \mathrm{~d} x=\int \frac{1}{u} \mathrm{~d} u=\ln |u|+C=\ln |x+3|+C .
$$

The definite integral from $x=2$ to $x=7$ now evaluates to

$$
\left.\ln |x+3|\right|_{x=2} ^{x=7}=\ln 10-\ln 5=\ln 2
$$

(f) Set $u:=2 x-2$ such that $\frac{d u}{d x}=2$.

$$
\int \frac{1}{2 x-2} \mathrm{~d} x=\frac{1}{2} \int \frac{1}{u} \mathrm{~d} u=\frac{1}{2} \ln |u|+C=\ln |2 x-2|+C .
$$

The definite integral from $x=3$ to $x=5$ evaluates to

$$
\left.\frac{1}{2} \ln |2 x-2|\right|_{x=3} ^{x=5}=\frac{1}{2}(\ln 8-\ln 4)=\ln \sqrt{2}
$$

2. (a) The roots of the polynomial $x\left(x^{2}-2\right)=x(x-\sqrt{2})(x+\sqrt{2})$ are $x_{1}=0$, $x_{2}=\sqrt{2}$ and $x_{3}=-\sqrt{2}$. These are all simple and real, thus we aim determine constants $A, B, C \in \mathbb{R}$ such that

$$
\begin{aligned}
\frac{x-1}{x^{2}(x-2)} & =\frac{A}{x}+\frac{B}{(x-\sqrt{2})}+\frac{C}{(x+\sqrt{2})} \\
& =\frac{A(x-\sqrt{2})(x+\sqrt{2})+B x(x+\sqrt{2})+C x(x-\sqrt{2})}{x(x-\sqrt{2})(x+\sqrt{2})} \\
& =\frac{(A+B+C) x^{2}+(\sqrt{2} B-\sqrt{2} C) x-2 A}{x(x-\sqrt{2})(x+\sqrt{2})} .
\end{aligned}
$$

By comparing coefficients, we construct the following system of equations

$$
\begin{aligned}
A+B+C & =0 \\
\sqrt{2} B-\sqrt{2} C & =1 \\
-2 A & =-1,
\end{aligned}
$$

whose solution is given by

$$
A=\frac{1}{2}, \quad B=\frac{\sqrt{2}-1}{4}, \quad C=-\frac{\sqrt{2}+1}{4} .
$$

Finally, we compute

$$
\begin{aligned}
\int_{2}^{3} \frac{x-1}{x\left(x^{2}-2\right)} \mathrm{d} x & =\int_{2}^{3}\left(\frac{1}{2 x}+\frac{\sqrt{2}-1}{4} \frac{1}{x-\sqrt{2}}-\frac{\sqrt{2}+1}{4} \frac{1}{x+\sqrt{2}}\right) \mathrm{d} x \\
& =\frac{1}{2} \ln (x)+\frac{\sqrt{2}-1}{4} \ln (x-\sqrt{2})-\left.\frac{\sqrt{2}+1}{4} \ln (x+\sqrt{2})\right|_{x=2} ^{x=3} \\
& =\frac{1}{2} \ln \left(\frac{3}{2}\right)+\frac{\sqrt{2}-1}{4} \ln \left(\frac{3-\sqrt{2}}{2-\sqrt{2}}\right)-\frac{\sqrt{2}+1}{4} \ln \left(\frac{3+\sqrt{2}}{2+\sqrt{2}}\right) .
\end{aligned}
$$

(b) The roots of the polynomial $(x+2)(x+3)^{2}$ are $x_{1}=-2$ and $x_{2}=-3$. Notice that x_{1} is simple, whilst the second root has multiplicity 2 . Therefore, we have to determine $A, B, C \in \mathbb{R}$ such that

$$
\begin{aligned}
\frac{x^{2}}{(x+2)(x+3)^{2}} & =\frac{A}{x+2}+\frac{B}{x+3}+\frac{C}{(x+3)^{2}} \\
& =\frac{A(x+3)^{2}+B(x+2)(x+3)+C(x+2)}{(x+2)(x+3)^{2}}
\end{aligned}
$$

In particular,

$$
A(x+3)^{2}+B(x+2)(x+3)+C(x+2)=x^{2}
$$

and so by choosing suitable values of x we determine the above constants:
by setting $x=-2$, we deduce that $A=4$. This, together with the choice $x=-3$, tells us that $C=-9$. Finally, by inserting $x=0$, we find $B=-3$.

The integral now evaluates to

$$
\begin{aligned}
\int_{-1}^{1} \frac{x^{2}}{(x+2)(x+3)^{2}} \mathrm{~d} x & =\int_{-1}^{1}\left(\frac{4}{x+2}-\frac{3}{x+3}-\frac{9}{(x+3)^{2}}\right) \mathrm{d} x \\
& =4 \ln (x+2)-3 \ln (x+3)+\left.\frac{9}{x+3}\right|_{x=-1} ^{x=1} \\
& =4 \ln (3)-3 \ln (2)-\frac{9}{4}
\end{aligned}
$$

where we have used that $\ln 4-\ln 2=\ln (2 \cdot 2)-\ln 2=\ln 2$.
3. (a) First, notice that $\cos x \sin x=\frac{1}{2} \sin 2 x$. Then

$$
\int \cos x \sin x \mathrm{~d} x=\frac{1}{2} \int \sin 2 x \mathrm{~d} x=\frac{1}{4} \int \sin u \mathrm{~d} u=-\frac{1}{4} \cos 2 x+C_{1},
$$

where we use the substitution $u=2 x$.
Proceed using integration by parts with $f(x)=x$ and $g^{\prime}(x)=\cos x \sin x$:

$$
\begin{aligned}
\int x \cos x \sin x \mathrm{~d} x & =x \cdot \int \cos x \sin x \mathrm{~d} x-\int\left(\int \cos x \sin x \mathrm{~d} x\right) \mathrm{d} x \\
& =-\frac{x}{4} \cos 2 x+\frac{1}{4} \int \cos 2 x \mathrm{~d} x
\end{aligned}
$$

Now, as above, use the substitution $u=2 x$ to compute the latter integral:

$$
\frac{1}{4} \int \cos 2 x \mathrm{~d} x=\frac{1}{8} \int \cos u \mathrm{~d} u=\frac{1}{8} \sin 2 x+C_{2} .
$$

Altogether, we have

$$
\int x \cos x \sin x \mathrm{~d} x=\frac{1}{8} \sin 2 x-\frac{x}{4} \cos 2 x+C_{3} .
$$

(b) We directly compute

$$
\begin{aligned}
\int \frac{\mathrm{d} x}{x^{2}\left(x^{2}-1\right)} & =\int \frac{-\left(x^{2}-1\right)+\frac{1}{2}\left(x^{3}+x^{2}\right)-\frac{1}{2}\left(x^{3}-x^{2}\right)}{x^{2}(x+1)(x-1)} \mathrm{d} x \\
& =\int\left(\frac{-\left(x^{2}-1\right)}{x^{2}(x+1)(x-1)}+\frac{\frac{1}{2}\left(x^{3}+x^{2}\right)}{x^{2}(x+1)(x-1)}-\frac{\frac{1}{2}\left(x^{3}-x^{2}\right)}{x^{2}(x+1)(x-1)}\right) \mathrm{d} x \\
& =\int\left(-\frac{1}{x^{2}}+\frac{1}{2(x-1)}-\frac{1}{2(x+1)}\right) \mathrm{d} x \\
& =\frac{1}{x}+\frac{1}{2} \ln |x-1|-\frac{1}{2} \ln |x+1|+C \\
& =\frac{1}{x}+\frac{1}{2}(\ln |x-1|-\ln |x+1|)+C
\end{aligned}
$$

(c) Set $u:=\ln x$, such that $\frac{d u}{d x}=\frac{1}{x}$. now

$$
\int \frac{1}{x \ln x}=\int \frac{1}{u} \mathrm{~d} u=\ln |u|+C=\ln |\ln x|+C .
$$

4. (a) Using the result of 1.(d), we compute

$$
f_{1}(x)=\int_{0}^{x} \frac{e^{-\sqrt{t}}}{\sqrt{t}} \mathrm{~d} t=-\left.2 e^{-\sqrt{t}}\right|_{t=0} ^{t=x}=2-2 e^{-\sqrt{x}}
$$

Thus,

$$
f_{1}^{\prime}(x)=\left(2-2 e^{-\sqrt{x}}\right)^{\prime}=-2 e^{-\sqrt{x}} \cdot(-\sqrt{x})^{\prime}=\frac{e^{-\sqrt{x}}}{\sqrt{x}},
$$

and we conclude that $f_{1}^{\prime}(1)=e^{-1}=\frac{1}{e}$.
(b) We apply the result of 1.(d) again;

$$
f_{2}(x)=\int_{x}^{x^{2}} \frac{e^{-\sqrt{t}}}{\sqrt{t}} \mathrm{~d} t=-\left.2 e^{-\sqrt{ } t}\right|_{t=x} ^{t=x^{2}}=2 e^{-\sqrt{x}}-2 e^{-x},
$$

and therefore

$$
f_{2}^{\prime}(x)=\left(2 e^{-\sqrt{x}}-2 e^{-x}\right)^{\prime}=2 e^{-x}-\frac{e^{-\sqrt{x}}}{\sqrt{x}}
$$

In particular, $f_{2}^{\prime}(1)=2 e^{-1}-e^{-1}=e^{-1}=\frac{1}{e}$.
(c) Recall the formula

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{g(x)}^{h(x)} f(t) \mathrm{d} t=f(h(x)) \cdot h^{\prime}(x)-f(g(x)) \cdot g^{\prime}(x)
$$

given by the chain rule and the second fundamental theorem of calculus. In particular,

$$
f_{1}^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \int_{0}^{x} \frac{e^{-\sqrt{t}}}{\sqrt{t}} \mathrm{~d} t=\frac{e^{-\sqrt{x}}}{\sqrt{x}},
$$

and so $f_{1}^{\prime}(1)=\frac{1}{e}$. Similarly

$$
f_{2}^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \int_{x}^{x^{2}} \frac{e^{-\sqrt{t}}}{\sqrt{t}} \mathrm{~d} t=2 e^{-x}-\frac{e^{-\sqrt{x}}}{\sqrt{x}}
$$

and $f_{2}^{\prime}(1)=\frac{1}{e}$. Our results agree with the solutions to 4.(a) and 4.(b).
(d) We proceed as above and directly compute

$$
g_{1}^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \int_{0}^{x} \frac{d t}{t^{3}+1}=\frac{1}{x^{3}+1},
$$

so $g_{1}^{\prime}(2)=\frac{1}{9}$.
(e) Similarly to the computations above we find

$$
g_{2}^{\prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x} \int_{0}^{x^{2}} \frac{d t}{t^{3}+1}=\frac{2 x}{x^{6}+1}
$$

and therefore $g_{2}^{\prime}(2)=\frac{4}{65}$.
5. First calculate

$$
\begin{aligned}
\int f(t) \mathrm{d} t & =\int 25 e^{-t} \mathrm{~d} t+e^{-0.05 t} \mathrm{~d} t \\
& =-25 e^{-t}-\frac{1}{0.05} e^{-0.05 t}+C
\end{aligned}
$$

We find the answer to the question by evaluating the corresponding definite integral from $t=0$ to $t=10$:

$$
\int_{0}^{10} f(t) \mathrm{d} t=-25 e^{-t}-\left.\frac{1}{0.05} e^{-0.05 t}\right|_{t=0} ^{x=10} \approx 33
$$

Therefore, in the first ten days, about 33 mm of water flows from the area affected by the weather.

