DIFFERENTIAL MULTIVARIABLE CALCULUS

1. (a) We differentiate with respect to x first, such that

$$
\frac{\partial}{\partial y} \frac{\partial}{\partial x}\left(x \sin (y)+e^{y}\right)=\frac{\partial}{\partial y} \sin y=\cos y .
$$

(b) We should differentiate with respect to y first:

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial y}\left(\frac{1}{x}\right)=0 .
$$

(c) Differentiating in x first gives

$$
\frac{\partial}{\partial y} \frac{\partial}{\partial x}\left(y+\frac{x}{y}\right)=\frac{\mathrm{d}}{\mathrm{~d} y} \frac{1}{y}=-\frac{1}{y^{2}} .
$$

(d) With respect to x first we have

$$
\frac{\partial}{\partial y} \frac{\partial}{\partial x}\left(y+x^{2} y+4 y^{3}-\ln \left(y^{2}+1\right)\right)=\frac{\mathrm{d}}{\mathrm{~d} x} x^{2}=2 x .
$$

(e) Differenatiate with respect to y first such that

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial y} x^{2}+5 x y+\sin (x)+7 e^{x}=\frac{\mathrm{d}}{\mathrm{~d} x} 5 y=5 .
$$

(f) With respect to y first gives

$$
\frac{\partial}{\partial x} \frac{\partial}{\partial y}(x \ln (x y))=\frac{\partial}{\partial x}\left(x \cdot \frac{x}{x y}\right)=\frac{1}{y} .
$$

2. (a) Two parallel lines $y= \pm \sqrt{c}$:

(b) Lozenge centred at the origin:

(c) Circle centred at the origin:

3. The gradient of a function $f(x, y)$ is given by

$$
\nabla f(x, y)=\left(f_{x}, f_{y}\right),
$$

and so we simply need to calculate $f_{x}=\frac{\partial}{\partial x} f(x, y)$ and $f_{y}=\frac{\partial}{\partial y} f(x, y)$.
(a) $f_{x}=\frac{\partial}{\partial x} \sqrt{x^{2}+y^{2}-9}=\frac{x}{\sqrt{x^{2}+y^{2}-9}}$ and $f_{y}=\frac{\partial}{\partial y} \sqrt{x^{2}+y^{2}-9}=\frac{y}{\sqrt{x^{2}+y^{2}-9}}$.
(b) $f_{x}=\frac{\partial}{\partial x} x y=y$ and $f_{y}=\frac{\partial}{\partial y} x y=x$.
(c) $f_{x}=\frac{\partial}{\partial x}\left(x^{3}+3\left(x^{2}-y^{2}\right)-3\right)=3 x^{2}+6 x$ and $f_{y}=\frac{\partial}{\partial y}\left(x^{3}+3\left(x^{2}-y^{2}\right)-3\right)=-6 y$.
4. The intersection of the surface with the plane $x=2$ is the curve $z=\arctan (2 y)$. To find the tangent line, we first work in the plane $x=2$, before extending to three dimensional space.

In the plane: the slope of the tangent line is given by $m=\frac{\partial z}{\partial y}=\frac{2}{1+4 y^{2}}$, which evaluates to $m=\frac{2}{1+1}=1$ at $y=\frac{1}{2}$. Recall that the equation of a straight line with slope m passing through a point $\left(y_{0}, z_{0}\right)$ is given by $z-z_{0}=m\left(y-y_{0}\right)$. Since our tangent line must pass through the point $(y, z)=\left(\frac{1}{2}, \frac{\pi}{4}\right)$, we arrived at $z=y-\frac{1}{2}+\frac{\pi}{4}$.

In three dimensions: to find a correct description in three dimensions, use that the first coordinate x is constantly equal to 2 . In particular, our tangent line is given by $\left\{\left(2, y, y-\frac{1}{2}+\frac{\pi}{4}\right): y \in \mathbb{R}\right\}$. Be aware that there are many other possible descriptions (parametrisations); for example $\left(2, z+\frac{1}{2}-\frac{\pi}{4}, z\right)$ for $z \in \mathbb{R}$ or $\left(2, \frac{1}{2}+t, \frac{\pi}{4}+t\right)$ for $t \in \mathbb{R}$.
5. The volume of the box is given by $V(a, b, c)=a b c$; the rate of change at any specific time t is therefore

$$
\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\partial(a b c)}{\partial a} \frac{\mathrm{~d} a}{\mathrm{~d} t}+\frac{\partial(a b c)}{\partial b} \frac{\mathrm{~d} b}{\mathrm{~d} t}+\frac{\partial(a b c)}{\partial c} \frac{\mathrm{~d} c}{\mathrm{~d} t}=b c \frac{\mathrm{~d} a}{\mathrm{~d} t}+c a \frac{\mathrm{~d} b}{\mathrm{~d} t}+a b \frac{\mathrm{~d} c}{\mathrm{~d} t}
$$

Evaluating this at time t_{0} gives $\left.V^{\prime}(a, b, c)\right|_{t=t_{0}}=6 \cdot 1+3 \cdot 1+2 \cdot(-3)=3$.
The surface area is $A(a, b, c)=2(a b+b c+c a)$; thus the rate of change is given by

$$
\frac{\mathrm{d} A}{\mathrm{~d} t}=2(b+c) \frac{\mathrm{d} a}{\mathrm{~d} t}+2(c+a) \frac{\mathrm{d} b}{\mathrm{~d} t}+2(a+b) \frac{\mathrm{d} c}{\mathrm{~d} t}
$$

Evaluating at t_{0}, we get $\left.A^{\prime}(a, b, c)\right|_{t=t_{0}}=0$.

Finally, the length of an internal diagonal is given by $D(a, b, c)=\sqrt{a^{2}+b^{2}+c^{2}}$. By using the chain rule, we compute

$$
\frac{\mathrm{d} D}{\mathrm{~d} t}=\frac{1}{2 \sqrt{a^{2}+b^{2}+c^{2}}}\left(2 a \frac{\mathrm{~d} a}{\mathrm{~d} t}+2 b \frac{\mathrm{~d} b}{\mathrm{~d} t}+2 c \frac{\mathrm{~d} c}{\mathrm{~d} t}\right)
$$

since the term in the brackets is $2(1+2-9)<0$ at time t_{0}, the diagonals must be decreasing in length.
6. Since $y=12-x$, we can reduce this question to a problem in one variable. Set $f(x)=x^{2} y=x^{2}(12-x)$. The minimum of $f(x)$ with x restricted to $[0,12]$ can occur at the endpoints of this interval, or when $f^{\prime}(x)=0$. Since $f^{\prime}(x)=24 x-3 x^{2}$, the latter case corresponds to $x=8$.

We compute $f(0)=f(12)=0$ and $f(8)=256$; thus the minimum $f(x)=0$ is attained for $x=0, y=12$ and for $x=12, y=0$.
7. We work with the function

$$
F(x, y, z)=x^{2}+y^{2}+z^{2}
$$

and note that we don't have to have a zero on one side of the equal sign. All that we need is a constant. To finish this problem out we simply need the gradient evaluated at the point.

$$
\begin{aligned}
& \nabla F=(2 x, 2 y, 2 z), \\
& \nabla F(1,-2,5)=(2,-4,10)
\end{aligned}
$$

The tangent plane is then,

$$
2(x-1)-4(y+2)+10(z-5)=0
$$

and the normal line is

$$
r(t)=(1,-2,5)+t(2,-4,10)=(1+2 t,-2-4 t, 5+10 t)
$$

