1. (a) To use the chain rule, we need the four quantities $d z / d x, d z / d y, d x / d t$, and $d y / d t$:

$$
\frac{d z}{d x}=8 x, \frac{d x}{d t}=\cos (t), \frac{d z}{d y}=6 y, \text { and } \frac{d y}{d t}=-\sin (t)
$$

Now, we substitute each of these into Equation $d z / d t=d z / d x \cdot d x / d t+$ $d z / d y \cdot d y / d t$ to obtain

$$
\frac{d z}{d t}=8 x \cos (t)+6 y-\sin (t)
$$

This answer has three variables in it. To reduce it to one variable, use the fact that $x(t)=\sin t$ and $y(t)=\cos t$. We obtain

$$
\frac{d z}{d t}=2 \sin (t) \cos (t)
$$

(b) To use the chain rule, we need again the four quantities $d z / d x, d z / d y, d x / d t$, and $d y / d t$:

$$
\frac{d z}{d x}=\frac{x}{\sqrt{x^{2}-y^{2}}}, \frac{d x}{d t}=2 e^{2 t}, \frac{d z}{d y}=\frac{-y}{\sqrt{x^{2}-y^{2}}}, \text { and } \frac{d y}{d t}=-e^{-t}
$$

Again we substitute in $d z / d t=d z / d x \cdot d x / d t+d z / d y \cdot d y / d t$ to obtain

$$
\frac{d z}{d t}=\frac{2 x e^{2 t}-y e^{t}}{\sqrt{x^{2}-y^{2}}}
$$

To reduce this to one variable, we use the fact that $x(t)=e^{2 t}$ and $y(t)=e^{-t}$. Therefore,

$$
\frac{d z}{d t}=\frac{2 e^{4 t}+e^{-2 t}}{\sqrt{e^{4 t}-e^{-2 t}}}
$$

2. To use the chain rule for two variables, we need the six quantities $d z / d x, d z / d y$, $d x / d u, d x / d v, d y / d u$, and $d y / d v$:

$$
\begin{aligned}
& \frac{d z}{d x}=6 x-2 y, \frac{d z}{d y}=-2 x+2 y, \frac{d x}{d u}=3 \\
& \frac{d x}{d v}=2, \frac{d y}{d u}=4, \frac{d y}{d v}=-1
\end{aligned}
$$

Then we using the formula and substituting with $x(u, v)=3 u+2 v$ and $y(u, v)=$ $4 u-v$, we obtain

$$
\begin{aligned}
\frac{d z}{d u} & =\frac{d z}{d x} \cdot \frac{d x}{d u}+\frac{d z}{d y} \cdot \frac{d y}{d u} \\
& =10 x+2 y \\
& =38 u+18 v .
\end{aligned}
$$

Similarly for $d z / d v$:

$$
\frac{d z}{d v}=18 u+34 v
$$

3. We first need the gradient

$$
\nabla f=(-y \sin (x y),-x \sin (x y))
$$

Also recall that we need to make sure that the direction vector is a unit vector. So let's convert it to a unit vector.

$$
|\vec{v}|=\sqrt{3^{2}+(-4)^{2}}=5, \text { so that } \vec{u}=\frac{\vec{v}}{|\vec{v}|}=\left(\frac{3}{5}, \frac{-4}{5}\right)
$$

The directional derivative is then

$$
\begin{aligned}
D_{\vec{u}} f & =(-y \sin (x y),-x \sin (x y)) \cdot\left(\frac{3}{5}, \frac{-4}{5}\right) \\
& =\frac{-3 y}{5} \sin (x y)+\frac{-4 x}{5} \sin (x y)
\end{aligned}
$$

4. (a) Simply separate and integrate:

$$
\int \mathrm{d} y=y=\int \frac{\mathrm{d} x}{\sqrt{1+x^{2}}}=\operatorname{arcsinh} x+C
$$

for some constant $C \in \mathbb{R}$. This is the general solution; below is a plot for various values of C.

The solution curves all have the same shape. Variations in C shift them along the y-axis.
(b) Separate and integrate, using the substitution $z=1+x^{2}$:

$$
\int \mathrm{d} y=y=\int \frac{4 x}{\left(1+x^{2}\right)^{1 / 3}} \mathrm{~d} x=\int \frac{2}{z^{1 / 3}} \mathrm{~d} z=3 z^{2 / 3}+C
$$

and so the general solution is given by $y=3\left(1+x^{2}\right)^{2 / 3}+C$. A sketch of the solution for varying values of C is shown below.
Again, the constant C simply shifts the position of the solution curves.

5. (a) Solving the given differential equation by separation of variables leads to $\ln y=\ln x+C_{1}$, and so $y=C x$ for some constant $C=e^{C_{1}}$. These are all lines through the origin.
(b) The curves orthogonal to lines through the origin are circles centred at the origin.
(c) The orthogonal curves have equations $x^{2}+y^{2}=r^{2}$, where r is the radius. Differentiating this equation with respect to x, results in

$$
2 x+2 y \frac{d y}{d x}=0
$$

or $\frac{d y}{d x}=-\frac{x}{y}$, as required.
In particular, the orthogonal circles have slope $-\frac{x}{y}$ at each point (x, y), which is precisely the negative reciprocal of $\frac{y}{x}$, the slope of the integral lines.
6. (a) The first order differential equation we need to solve is given by

$$
y^{\prime}=0,1 \cdot y \cdot(4-2 x)
$$

First separate the variables such that

$$
\frac{\mathrm{d} y}{y}=0,1 \cdot(4-2 x) \mathrm{d} x
$$

and integrate to arrive at

$$
\ln |y|=0,1 \cdot\left(4 x-x^{2}\right)+C_{1}
$$

for some constant $C_{1} \in \mathbb{R}$. Solving for y gives

$$
y=C e^{0,1 \cdot\left(4 x-x^{2}\right)}
$$

where $C=e_{1}^{C}$. Since $y(0)=6$, we find that $C=6$; in other words,

$$
y=6 e^{0,1 \cdot\left(4 x-x^{2}\right)} .
$$

(b) The graph of $y=6 e^{0,1 \cdot\left(4 x-x^{2}\right)}$ is displayed below. The number of bacteria is first increasing; however, after the effects of the penicillin treatment become more significant, the illness disappears.
(c) Setting the differential equation equal to zero gives

$$
0,1 \cdot y \cdot(4-2 x)=0
$$

and so $y^{\prime}=0$ occurs when $x=2$. The highest number of bacteria in the patient's system is therefore 8,95 millions, after two days.

