1. Area enclosed by a graph

Consider the real-valued function $f(x)=(\ln x)^{2}-1$.
(a) Find the zeros of f and sketch its graph, clearly indicating these zeros.
(b) Use integration by parts to show the following two identities:
$\int \ln x \mathrm{~d} x=x \cdot \ln x-x+c_{1}, \quad \int(\ln x)^{2} \mathrm{~d} x=x \cdot(\ln x)^{2}-2 x \cdot \ln x+2 x+c_{2}$, where $c_{1}, c_{2} \in \mathbb{R}$.
(c) Compute the area enclosed by the graph of f, the x-axis, and the two lines $x=1, x=5$.

2. Evaluation of a function and its derivatives

Which of the following graph(s) has the properties: $f^{\prime}(0)>0, f^{\prime}(1)<0$ and $f^{\prime \prime}(x)<0$ for all values of x ? Justify all of your answers.
(a)

(b)

(c)

(d)

(e)

3. Complex numbers

(a) Sketch the following subset of \mathbb{C} :

$$
\{z \in \mathbb{C}||z-i|>1 \text { and }| z \mid<2\} .
$$

(b) Write the expression $\frac{3+i}{2-i}$ in the form $x+i y$, with $x, y \in \mathbb{R}$.
(c) Write $1+i$ in polar form $r e^{i \varphi}$.

4. Linear differential equations with constant coefficients

Find the general solutions to the following two differential equations.
(a) $y^{\prime \prime}+2 y^{\prime}+2 y=0$, subject to $y(\pi)=0$ and $y^{\prime}(\pi)=2 e^{-\pi}$,
(b) $y^{\prime \prime}=1+t^{2}$.

5. System of linear equations

Consider the equation

$$
\left(\begin{array}{rrr}
1 & 0 & t \\
5 & -1 & 10 \\
-1 & 1 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right) .
$$

(a) For which values of the parameter $t \in \mathbb{R}$ does the above equation have a unique solution $x \in \mathbb{R}^{3}$?

$$
x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \in \mathbb{R}^{3}
$$

(b) Determine the solution for the case $t=-1$.

6. Eigenvalues and eigenvectors

Let A be the 2×2-matrix

$$
A=\left(\begin{array}{cc}
\frac{3}{4} & \frac{\sqrt{3}}{4} \\
\frac{\sqrt{3}}{4} & \frac{1}{4}
\end{array}\right) .
$$

(a) Find an eigenvector for each eigenvalue of the matrix A.
(b) Consider the mapping

$$
\begin{aligned}
f: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto f(x):=A x .
\end{aligned}
$$

Compute the image $f(x)$ of

$$
x:=\binom{\sqrt{3}-1}{\sqrt{3}+1},
$$

where x is written in the standard basis. Give a geometric interpretation of the result.

7. System of linear differential equations

Determine the functions $x_{1}(t)$ and $x_{2}(t)$ that solve the system of linear differential equations

$$
\begin{aligned}
& \dot{x_{1}}=1 x_{1}+2 x_{2}, \\
& \dot{x_{2}}=3 x_{1}+2 x_{2},
\end{aligned}
$$

subject to the initial conditions $x_{1}(0)=0$ and $x_{2}(0)=5$.

