Mathematics

Cornelia Busch

D-ARCH

September 19, 2023

Mathematics

- Lecturer: PD Dr. Cornelia Busch

HG G 34.2
cornelia.busch@math.ethz.ch
+41446328269

- Assistant: Victor Jaeck

HG J 16.1
victor.jaeck@math.ethz.ch
+41446323136

Mathematics

- Webpage: Moodle
- Bibliography:

Serge Lang, A First Course in Calculus, 5th edition, Springer New York, 1986 (Online resource)
Serge Lang, Introduction to Linear Algebra 2nd edition, Springer New York, 1986 (Online resource)
George B. Thomas, Maurice D. Weir, Joel Hass, Thomas' Calculus : Early
Transcendentals : Single Variable, 13th ed., 2014, Pearson.
George B. Thomas, Maurice D. Weir, Joel Hass, Thomas' Calculus : Multivariable, 13th ed., 2014, Pearson.

Lecture

Lecture and exercise class	Monday 16:15-18:00 Tuesday $12: 15-14: 00$	HG G 26.3	
Special offer	Friday	$13: 15-14: 00$ starting Oct. 8. every odd week (except for the first one).	HG F 26.5

In the weather forecast

This week we loose 4 minutes of daylight every day.

Do you know any mathematical concept that is related to this statement?

In the weather forecast

This week we loose 4 minutes of daylight every day.

We consider a function "daylight", the function from the days in the calendar to the time interval from 0 minutes to 24 hours. \rightarrow A function ...

We have a statement about the change of the "daylight" function: At the mid of September it decreases by 4 minutes every day. $\rightarrow \ldots$ and its derivative.

Last year a student answered: . . . a differential equation!

Functions

A function f from a set A to a set B is a rule that defines for every $x \in A$ a unique $y=f(x) \in B$. We write

$$
\begin{aligned}
f: & A
\end{aligned} \rightarrow B=f(x) .
$$

The derivative

Let

$$
\begin{array}{rlll}
f: & \mathbb{R} & \longrightarrow \mathbb{R} \\
& x & \longmapsto f(x)
\end{array}
$$

be a function from \mathbb{R} to \mathbb{R}. The derivative of f is defined to be the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=: f^{\prime}(x)
$$

Another notation for f^{\prime} is

$$
f^{\prime}(x)=\frac{d}{d x} f(x)
$$

The derivative

The derivative of a function f in x_{0} is the slope of the tangent on the graph of f in the point $\left(x_{0}, f\left(x_{0}\right)\right)$.

The derivative measures how the value of the function changes in the neighbourhood of x.

The derivative

The derivative is not defined for each function f or for every point $(x, f(x))$. Let $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto f(x):=|x|$.

Then the derivative is -1 for $x<0$ and 1 for $0<x$, but the derivative is not defined in $x=0$.

Properties

Let $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ be functions and $a, b \in \mathbb{R}$. We assume that the derivatives of f, g and h are defined.

sum	$(f+g)^{\prime}=f^{\prime}+g^{\prime}$
constant factor	$(\lambda f)^{\prime}=\lambda f^{\prime}$

Example: Sum and scalar multiplication.

We compute the derivative of

$$
f(x)+\lambda g(x)
$$

with

$$
\begin{aligned}
& f(x)=x^{2} \\
& g(x)=\sin (x) \text { and } \\
& \lambda=3 \\
&\left(x^{2}+3 \sin (x)\right)^{\prime}=?
\end{aligned}
$$

Example: Sum and scalar multiplication.

$$
\begin{aligned}
\left(x^{2}+3 \sin (x)\right)^{\prime} & =\left(x^{2}\right)^{\prime}+(3 \sin (x))^{\prime} \\
& =\left(x^{2}\right)^{\prime}+3(\sin (x))^{\prime} \\
& =2 x+3 \cos (x)
\end{aligned}
$$

Properties

product	$(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
quotient	$\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

Example: Product rule

We compute the derivative

$$
(f \cdot g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

for

- $f(x)=x^{2}, g(x)=\sin (x)$
- $f(x)=\cos (x), g(x)=e^{x}$

Example: Product rule

$$
\begin{aligned}
\left(x^{2} \sin (x)\right)^{\prime} & =\left(x^{2}\right)^{\prime} \sin (x)+x^{2}(\sin (x))^{\prime} \\
& =2 x \sin (x)+x^{2} \cos (x)
\end{aligned}
$$

$$
\begin{aligned}
\left(\cos (x) \cdot e^{x}\right)^{\prime} & =(\cos (x))^{\prime} \cdot e^{x}+\cos (x) \cdot\left(e^{x}\right)^{\prime} \\
& =-\sin (x) \cdot e^{x}+\cos (x) \cdot e^{x} \\
& =(\cos (x)-\sin (x)) e^{x}
\end{aligned}
$$

Example: Quotient rule

We compute the derivative

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

for

- $f(x)=x^{2}, g(x)=\cos (x)$
- $f(x)=\sin (x), g(x)=\cos (x)$

Example: Quotient rule

$$
\begin{aligned}
\left(\frac{x^{2}}{\cos (x)}\right)^{\prime} & =\frac{\left(x^{2}\right)^{\prime} \cos (x)-x^{2}(\cos (x))^{\prime}}{(\cos (x))^{2}}=\frac{2 x \cos (x)+x^{2} \sin (x)}{\cos ^{2}(x)} \\
& =\frac{2 x}{\cos (x)}+\frac{x^{2}}{\cos (x)} \tan (x)
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{\sin (x)}{\cos (x)}\right)^{\prime} & =\frac{(\sin (x))^{\prime} \cdot \cos (x)-\sin (x) \cdot(\cos (x))^{\prime}}{(\cos (x))^{2}} \\
& =\frac{\cos (x) \cdot \cos (x)-\sin (x) \cdot(-\sin (x))}{\cos ^{2}(x)}=\frac{\cos ^{2}(x)+\sin ^{2}(x)}{\cos ^{2}(x)} \\
& =\frac{1}{\cos ^{2}(x)}=1+\tan ^{2}(x)
\end{aligned}
$$

Properties

chain rule	$(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$	$\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}$
inverse	$g^{\prime}(y)=\frac{1}{f^{\prime}(g(y))}$	$\frac{d x}{d y}=\left(\frac{d y}{d x}\right)^{-1}$

Example: Chain rule

We compute the derivative of the composition $(f \circ g)(x)=f(g(x))$ of two functions

$$
(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)
$$

for $f(x)=\sin (x), g(x)=x^{2}$. In this case

$$
(f \circ g)(x)=f(g(x))=\sin \left(x^{2}\right)
$$

Exchanging the order of the composition, we get a different function:

$$
(g \circ f)(x)=g(f(x))=(\sin (x))^{2}=\sin ^{2}(x)
$$

Example: Chain rule

$$
\begin{aligned}
(f \circ g)^{\prime}(x) & =\left(\sin \left(x^{2}\right)\right)^{\prime}=\sin ^{\prime}\left(x^{2}\right) \cdot\left(x^{2}\right)^{\prime} \\
& =\cos \left(x^{2}\right) \cdot(2 x) \\
& =2 x \cos \left(x^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
(g \circ f)^{\prime}(x) & =\left(\sin ^{2}(x)\right)^{\prime} \\
& =2 \sin (x)(\sin (x))^{\prime} \\
& =2 \sin (x) \cos (x)
\end{aligned}
$$

There is no exercise class this Friday!
 Have a good start!

