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Lecture

Lecture Monday 16:15 – 18:00 HG G 26.3
and exercise class Tuesday 12:15 – 14:00 HG G 26.3

Special offer Friday 13:15 – 14:00 HG F 26.5
starting Oct. 8.
every odd week
(except for the first one).



In the weather forecast

This week we loose 4 minutes of daylight every day.

Do you know any mathematical concept that is related to this statement?



In the weather forecast

This week we loose 4 minutes of daylight every day.

We consider a function “daylight”, the function from the days in the calendar to the time
interval from 0 minutes to 24 hours. → A function . . .

We have a statement about the change of the “daylight” function: At the mid of September
it decreases by 4 minutes every day. → . . . and its derivative.

Last year a student answered: . . . a differential equation!



Functions

A function f from a set A to a set B is a rule that defines for every x ∈ A a unique
y = f (x) ∈ B . We write

f : A → B
x 7→ y = f (x) .



The derivative

Let
f : R −→ R

x 7−→ f (x)

be a function from R to R. The derivative of f is defined to be the limit

lim
∆x→0

f (x +∆x)− f (x)
∆x

=: f ′(x)

Another notation for f ′ is
f ′(x) =

d
dx

f (x) .



The derivative

The derivative of a function f in x0 is the slope of the tangent on the graph of f in the point
(x0, f (x0)).

x

f (x)

The derivative measures how the value of the function changes in the neighbourhood of x .



The derivative

The derivative is not defined for each function f or for every point (x , f (x)).
Let f : R → R, x 7→ f (x) := |x |.

x

f (x)

Then the derivative is −1 for x < 0 and 1 for 0 < x , but the derivative is not defined in
x = 0.



Properties

Let f : R → R, g : R → R, h : R → R be functions and a,b ∈ R. We assume that the
derivatives of f , g and h are defined.

sum (f + g)′ = f ′ + g′

constant factor (λf )′ = λf ′



Example: Sum and scalar multiplication.

We compute the derivative of
f (x) + λg(x)

with

f (x) = x2

g(x) = sin(x) and
λ = 3.

(
x2 + 3 sin(x)

)′
=?



Example: Sum and scalar multiplication.

(
x2 + 3 sin(x)

)′
=

(
x2)′ + (

3 sin(x)
)′

=
(
x2)′ + 3

(
sin(x)

)′
= 2x + 3 cos(x)



Properties

product (fg)′ = f ′g + fg′

quotient
( f

g

)′
=

f ′g − fg′

g2



Example: Product rule

We compute the derivative (
f · g

)′
= f ′g + fg′

for
• f (x) = x2, g(x) = sin(x)
• f (x) = cos(x), g(x) = ex



Example: Product rule

(
x2 sin(x)

)′
=

(
x2)′ sin(x) + x2(sin(x))′

= 2x sin(x) + x2 cos(x)

(
cos(x) · ex)′ = (

cos(x)
)′ · ex + cos(x) ·

(
ex)′

= − sin(x) · ex + cos(x) · ex

=
(
cos(x)− sin(x)

)
ex



Example: Quotient rule

We compute the derivative (
f
g

)′
=

f ′g − fg′

g2

for
▶ f (x) = x2, g(x) = cos(x)
▶ f (x) = sin(x), g(x) = cos(x)



Example: Quotient rule

(
x2

cos(x)

)′
=

(x2)′ cos(x)− x2(cos(x))′

(cos(x))2 =
2x cos(x) + x2 sin(x)

cos2(x)

=
2x

cos(x)
+

x2

cos(x)
tan(x)

(
sin(x)
cos(x)

)′
=

(sin(x))′ · cos(x)− sin(x) · (cos(x))′

(cos(x))2

=
cos(x) · cos(x)− sin(x) · (− sin(x))

cos2(x)
=

cos2(x) + sin2(x)
cos2(x)

=
1

cos2(x)
= 1 + tan2(x)



Properties

chain rule (f ◦ g)′(x) = f ′(g(x)) · g′(x)
dz
dx

=
dz
dy

· dy
dx

inverse g′(y) =
1

f ′(g(y))
dx
dy

=
(dy

dx

)−1



Example: Chain rule

We compute the derivative of the composition (f ◦ g)(x) = f
(
g(x)

)
of two functions

(f ◦ g)′(x) = f ′
(
g(x)

)
· g′(x)

for f (x) = sin(x), g(x) = x2. In this case

(f ◦ g)(x) = f
(
g(x)

)
= sin(x2) .

Exchanging the order of the composition, we get a different function:

(g ◦ f )(x) = g
(
f (x)

)
=

(
sin(x)

)2
= sin2(x) .



Example: Chain rule

(f ◦ g)′(x) =
(
sin(x2)

)′
= sin′(x2) · (x2)′

= cos(x2) · (2x)

= 2x cos(x2)

(g ◦ f )′(x) =
(
sin2(x)

)′
= 2 sin(x)

(
sin(x)

)′
= 2 sin(x) cos(x)



There is no exercise class this Friday!

Have a good start!


