Mathematics

Cornelia Busch

D-ARCH

September 25, 2023

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Last time?

Functions and their derivatives.

The derivative

The derivative of a function f in x_0 is the slope of the tangent on the graph of f in the point $(x_0, f(x_0))$.

The derivative measures how the value of the function changes in the neighbourhood of *x*.

Properties

Let $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$ be functions and $\lambda \in \mathbb{R}$. We assume that the derivatives of f, g and h are defined.

sum	(f+g)'=f'+g'	
constant factor	$(\lambda f)' = \lambda f'$	
product	(fg)'=f'g+fg'	
quotient	$\left(rac{f}{g} ight)'=rac{f'g-fg'}{g^2}$	

Properties

Let $f : \mathbb{R} \to \mathbb{R}$, $g : \mathbb{R} \to \mathbb{R}$, $h : \mathbb{R} \to \mathbb{R}$ be functions and $\lambda \in \mathbb{R}$. We assume that the derivatives of f, g and h are defined.

chain rule	$(f\circ g)'(x)=f'(g(x))\cdot g'(x)$	$\frac{dz}{dx} = \frac{dz}{dy} \cdot \frac{dy}{dx}$
inverse	$g'(y) = \frac{1}{f'(g(y))}$	$\frac{dx}{dy} = \left(\frac{dy}{dx}\right)^{-1}$

The derivative

Let

$$egin{array}{cccc} f: & \mathbb{R} & \longrightarrow & \mathbb{R} \ & x & \longmapsto & f(x) \end{array}$$

be a function from \mathbb{R} to \mathbb{R} . The *derivative* of *f* is defined to be the limit

$$\lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x} =: f'(x)$$

Another notation for f' is

$$f'(x)=rac{d}{dx}f(x)$$
 .

◆□ ◆ ▲ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆ ● ◆

Some definitions about functions.

(ロ) (型) (主) (主) (三) のへで

Extrema

"Die Mathematiker sind eine Art Franzosen: Redet man zu ihnen, so übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes."

Johann Wolfgang von Goethe

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

(Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely different.)

A *function* f from a set A to a set B is a rule that defines for every $x \in A$ a unique $y = f(x) \in B$. We write

▲□▶▲□▶▲□▶▲□▶ □ のQ@

We call

- A = dom(f) the *domain* of f,
- ▶ *B* the *codomain* or *range* of *f*.
- $\operatorname{im}(f) = \{y \in B \mid \exists x \in A \text{ with } f(x) = y\}$ the *image* of f
- graph(f) = {(x, y) $\in A \times B \mid y = f(x)$ } the graph of f.

The function is well-defined since $\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R} \text{ with } y = x^2$.

- The domain of f_1 is dom $(f_1) = \mathbb{R}$.
- ▶ The range of f_1 is \mathbb{R} .
- The image of f_1 is

$$\operatorname{im}(f_1) = \left\{ y \in \mathbb{R} \mid \exists x \in \mathbb{R} \text{ with } y = f_1(x) = x^2 \right\} = \mathbb{R}^{\geq 0},$$

where $\mathbb{R}^{\geqslant 0} = \{ y \in \mathbb{R} \mid y \geqslant 0 \}.$

► The graph of *f*₁

$$\operatorname{graph}(f_1) = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^2 \right\},\$$

is a parabola.

$$egin{array}{rcl} f_2:&\mathbb{R}& o&\mathbb{R}^{\geqslant 0}\ &x&\mapsto&f_2(x):=x^2\,. \end{array}$$

The function is well-defined since $\forall x \in \mathbb{R}, \exists ! y \in \mathbb{R}^{\geq 0}$ with $y = x^2$.

• The domain of
$$f_2$$
 is $dom(f_2) = \mathbb{R}$.

- The range of f_2 is $\mathbb{R}^{\geq 0}$.
- ▶ The image of f₂ is

$$\operatorname{\mathsf{im}}(\mathit{f}_2) = \mathbb{R}^{\geqslant 0}$$
 .

► The graph of *f*₂

$$\operatorname{graph}(f_2) = \left\{ (x, y) \in \mathbb{R} \times \mathbb{R}^{\geq 0} \mid y = x^2 \right\},\$$

is a parabola.

What is the difference between the following two functions?

$$f_1: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f_1(x) := \cos(x)$$

$$f_2: \mathbb{R} \to [-1, 1]$$

$$x \mapsto f_2(x) := \cos(x)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Both functions are well-defined since the image of the cosine is the interval [-1, 1].

- The domain of f_i , i = 1, 2, is dom $(f_i) = \mathbb{R}$.
- ▶ The range of f_1 is \mathbb{R} and the range of f_2 is [-1, 1].
- The image of f_i , i = 1, 2, is

$$\operatorname{im}(f_i) = [-1, 1]$$

The graph of f₁ is

$$\mathsf{graph}(f_1) = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = f_1(x)\}.$$

The graph of f_2 is

$$graph(f_2) = \{(x, y) \in \mathbb{R} \times [-1, 1] \mid y = f_1(x)\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Continuous functions

Let $f : \text{dom}(f) \to \mathbb{R}$ be a real function, and $I \subseteq \text{dom}(f)$ an open interval. If $\xi \in I$, then the function *f* is continuous in ξ if and only if

$$\lim_{x\to\xi}f(x)=f(\xi)\,.$$

Some examples of continuous functions $f : \mathbb{R} \longrightarrow \mathbb{R}$: Any polynomial of degree $n \in \mathbb{N}$:

$$f(x) := a_n x^n + \ldots + a_1 x + a_0$$

where $a_i \in \mathbb{R}$, i = 0, ..., n, and $a_n \neq 0$. The cosine and the sine function:

$$f(x) := \cos(x), \quad f(x) := \sin(x)$$

The exponential function and the logarithm:

$$f(x) := e^x, \quad f(x) := \ln(x)$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ● ● ●

Continuous functions

We define

There doesn't exist a continuous function $g : \mathbb{R} \to \mathbb{R}$ with g(x) = f(x) for all $x \in \text{dom}(f)$.

Intermediate value theorem

Let $f : [a, b] \to \mathbb{R}$ be a continuous function with f(a) < 0 and f(b) > 0 (resp. f(a) > 0 and f(b) < 0). Then $p \in (a, b)$ exists with f(p) = 0.

Mean value theorem

Let $f : [a, b] \to \mathbb{R}$ be continuous and differentiable in the inner of [a, b] (i.e. in (a, b)). Then there is a point $\xi \in (a, b)$ such that

$$f'(\xi) = rac{f(b) - f(a)}{b - a}$$
 resp. $f(b) - f(a) = f'(\xi)(b - a)$

Let $U \subseteq \mathbb{R}$ be a subset of the real numbers, $f : U \longrightarrow \mathbb{R}$ a function and $x_0 \in U$. Then the following hold.

- ▶ *f* has a local minimum in $x_0 \in U$ if there is an interval I = (a, b) with $x_0 \in I$ and $f(x_0) \leq f(x)$ for all $x \in I \cap U$.
- ▶ *f* has a global minimum in $x_0 \in U$ if $f(x_0) \leq f(x)$ for all $x \in U$.
- ▶ *f* has a local maximum in $x_0 \in U$ if there is an interval I = (a, b) with $x_0 \in I$ and $f(x_0) \ge f(x)$ for all $x \in I \cap U$.

▶ *f* has a global maximum in $x_0 \in U$ if $f(x_0) \ge f(x)$ for all $x \in U$.

Let

$$\begin{array}{rcccc} f: & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & f(x) \end{array}$$

be a function that is differentiable in $x_0 \in \mathbb{R}$, i.e. the derivative $\frac{d}{dx} f(x_0)$ exists. If

$$\frac{d}{dx}f(x_0)=f'(x_0)=0$$

and the derivative f' is differentiable in x_0 then

$$\begin{cases} \frac{d^2}{dx^2} f(x_0) = f''(x_0) > 0 \quad \Rightarrow f(x_0) \text{ is a local minimum of } f \\ \frac{d^2}{dx^2} f(x_0) = f''(x_0) < 0 \quad \Rightarrow f(x_0) \text{ is a local maximum of } f \end{cases}$$

attained in x_0 . No general statement is possible for $f''(x_0) = 0$.

Determine the extrema of the function

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) := x^2$

and of the function

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

The derivative of the function

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x) := x^2$

is f'(x) = 2x and has a zero in $x_0 = 0$, i.e. f'(0) = 0. The second derivative is f''(x) = 2, hence f''(0) = 2 > 0 and f(0) = 0 is a local minimum of f. It is attained in $x_0 = 0$.

This function has no maximum.

The function

has a local maximum g(0) = 0 that is attained in $x_0 = 0$. This function has no minimum.

We now restrict the domain to closed intervals.

$$egin{array}{rll} f: & [-1,2] & \longrightarrow & \mathbb{R} \ & x & \longmapsto & f(x) := x^2 \, . \end{array}$$

Since $0 \in [-1, 2]$, this function has a local minimum f(0) = 0 in $x_0 = 0$.

We now have to evaluate f in the boundaries $x_1 = -1$ and $x_2 = 2$ of the interval [-1, 2] and get f(-1) = 1, f(2) = 4Hence f(-1) > f(0), f(0) < f(2) and f(-1) < f(2).

The function has a global minimum 0 in 0. It has a global maximum f(2) = 4 in $x_2 = 2$ and a local maximum f(-1) = 1 in $x_1 = -1$.

There is no exercise class this Friday, but there will be one tomorrow!

See you tomorrow!

