Mathematics

Cornelia Busch

D－ARCH

September 25， 2023

Last time?

- Functions and their derivatives.

The derivative

The derivative of a function f in x_{0} is the slope of the tangent on the graph of f in the point $\left(x_{0}, f\left(x_{0}\right)\right)$.

The derivative measures how the value of the function changes in the neighbourhood of x.

Properties

Let $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ be functions and $\lambda \in \mathbb{R}$. We assume that the derivatives of f, g and h are defined.

sum	$(f+g)^{\prime}=f^{\prime}+g^{\prime}$
constant factor	$(\lambda f)^{\prime}=\lambda f^{\prime}$
product	$(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
quotient	$\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

Properties

Let $f: \mathbb{R} \rightarrow \mathbb{R}, g: \mathbb{R} \rightarrow \mathbb{R}, h: \mathbb{R} \rightarrow \mathbb{R}$ be functions and $\lambda \in \mathbb{R}$. We assume that the derivatives of f, g and h are defined.

chain rule	$(f \circ g)^{\prime}(x)=f^{\prime}(g(x)) \cdot g^{\prime}(x)$	$\frac{d z}{d x}=\frac{d z}{d y} \cdot \frac{d y}{d x}$
inverse	$g^{\prime}(y)=\frac{1}{f^{\prime}(g(y))}$	$\frac{d x}{d y}=\left(\frac{d y}{d x}\right)^{-1}$

The derivative

Let

$$
\begin{array}{rlll}
f: & \mathbb{R} & \longrightarrow \mathbb{R} \\
& x & \longmapsto f(x)
\end{array}
$$

be a function from \mathbb{R} to \mathbb{R}. The derivative of f is defined to be the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}=: f^{\prime}(x)
$$

Another notation for f^{\prime} is

$$
f^{\prime}(x)=\frac{d}{d x} f(x)
$$

Today

- Some definitions about functions.
- Extrema

Functions

"Die Mathematiker sind eine Art Franzosen: Redet man zu innen, so übersetzen sie es in ihre Sprache, und dann ist es alsobald ganz etwas anderes."

Johann Wolfgang von Goethe
(Mathematicians are like Frenchmen: whatever you say to them they translate into their own language and forthwith it is something entirely different.)

Functions

A function f from a set A to a set B is a rule that defines for every $x \in A$ a unique $y=f(x) \in B$. We write

$$
\begin{aligned}
f: & A
\end{aligned}>B=f(x) .
$$

We call

- $A=\operatorname{dom}(f)$ the domain of f,
- B the codomain or range of f.
- im $(f)=\{y \in B \mid \exists x \in A$ with $f(x)=y\}$ the image of f
- graph $(f)=\{(x, y) \in A \times B \mid y=f(x)\}$ the graph of f.

Functions

$$
\begin{aligned}
f_{1}: \mathbb{R} & \rightarrow \mathbb{R} \\
& x
\end{aligned}>f_{1}(x):=x^{2} .
$$

The function is well-defined since $\forall x \in \mathbb{R}, \exists!y \in \mathbb{R}$ with $y=x^{2}$.

- The domain of f_{1} is $\operatorname{dom}\left(f_{1}\right)=\mathbb{R}$.
- The range of f_{1} is \mathbb{R}.
- The image of f_{1} is

$$
\operatorname{im}\left(f_{1}\right)=\left\{y \in \mathbb{R} \mid \exists x \in \mathbb{R} \text { with } y=f_{1}(x)=x^{2}\right\}=\mathbb{R}^{\geqslant 0}
$$

where $\mathbb{R}^{\geqslant 0}=\{y \in \mathbb{R} \mid y \geqslant 0\}$.

- The graph of f_{1}

$$
\operatorname{graph}\left(f_{1}\right)=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=x^{2}\right\}
$$

is a parabola.

Functions

$$
\begin{aligned}
f_{2}: & \mathbb{R} \\
& \rightarrow \mathbb{R}^{\geqslant 0} \\
& \mapsto f_{2}(x):=x^{2} .
\end{aligned}
$$

The function is well-defined since $\forall x \in \mathbb{R}, \exists!y \in \mathbb{R}^{\geqslant 0}$ with $y=x^{2}$.

- The domain of f_{2} is $\operatorname{dom}\left(f_{2}\right)=\mathbb{R}$.
- The range of f_{2} is $\mathbb{R}^{\geqslant 0}$.
- The image of f_{2} is

$$
\operatorname{im}\left(f_{2}\right)=\mathbb{R} \geqslant 0 .
$$

- The graph of f_{2}

$$
\operatorname{graph}\left(f_{2}\right)=\left\{(x, y) \in \mathbb{R} \times \mathbb{R}^{\geqslant 0} \mid y=x^{2}\right\}
$$

is a parabola.

Functions

What is the difference between the following two functions?

$$
\begin{aligned}
& f_{1}: \mathbb{R} \rightarrow \mathbb{R} \\
& x \mapsto f_{1}(x):=\cos (x) \\
& f_{2}: \mathbb{R} \rightarrow[-1,1] \\
& x \mapsto f_{2}(x):=\cos (x)
\end{aligned}
$$

Both functions are well-defined since the image of the cosine is the interval $[-1,1]$.

Functions

- The domain of $f_{i}, i=1,2$, is $\operatorname{dom}\left(f_{i}\right)=\mathbb{R}$.
- The range of f_{1} is \mathbb{R} and the range of f_{2} is $[-1,1]$.
- The image of $f_{i}, i=1,2$, is

$$
\operatorname{im}\left(f_{i}\right)=[-1,1]
$$

- The graph of f_{1} is

$$
\operatorname{graph}\left(f_{1}\right)=\left\{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y=f_{1}(x)\right\}
$$

The graph of f_{2} is

$$
\operatorname{graph}\left(f_{2}\right)=\left\{(x, y) \in \mathbb{R} \times[-1,1] \mid y=f_{1}(x)\right\}
$$

Continuous functions

Let $f: \operatorname{dom}(f) \rightarrow \mathbb{R}$ be a real function, and $I \subseteq \operatorname{dom}(f)$ an open interval. If $\xi \in I$, then the function f is continuous in ξ if and only if

$$
\lim _{x \rightarrow \xi} f(x)=f(\xi)
$$

Some examples of continuous functions $f: \mathbb{R} \longrightarrow \mathbb{R}$: Any polynomial of degree $n \in \mathbb{N}$:

$$
f(x):=a_{n} x^{n}+\ldots+a_{1} x+a_{0}
$$

where $a_{i} \in \mathbb{R}, i=0, \ldots, n$, and $a_{n} \neq 0$. The cosine and the sine function:

$$
f(x):=\cos (x), \quad f(x):=\sin (x)
$$

The exponential function and the logarithm:

$$
f(x):=e^{x}, \quad f(x):=\ln (x)
$$

Continuous functions

We define

$$
f: \mathbb{R} \backslash\{0\} \quad \longrightarrow \mathbb{R}
$$

$x \longmapsto f(x):=\left\{\begin{aligned}-1 & \text { for } x<0 \\ 1 & \text { for } x>0 .\end{aligned}\right.$

There doesn't exist a continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ with $g(x)=f(x)$ for all $x \in \operatorname{dom}(f)$.

Intermediate value theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function with $f(a)<0$ and $f(b)>0$ (resp. $f(a)>0$ and $f(b)<0)$. Then $p \in(a, b)$ exists with $f(p)=0$.

Mean value theorem

Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous and differentiable in the inner of $[a, b]$ (i.e. in $(a, b))$. Then there is a point $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a} \quad \text { resp. } \quad f(b)-f(a)=f^{\prime}(\xi)(b-a) .
$$

Extrema

Let $U \subseteq \mathbb{R}$ be a subset of the real numbers, $f: U \longrightarrow \mathbb{R}$ a function and $x_{0} \in U$. Then the following hold.

- f has a local minimum in $x_{0} \in U$ if there is an interval $I=(a, b)$ with $x_{0} \in I$ and $f\left(x_{0}\right) \leqslant f(x)$ for all $x \in I \cap U$.
- f has a global minimum in $x_{0} \in U$ if $f\left(x_{0}\right) \leqslant f(x)$ for all $x \in U$.
- f has a local maximum in $x_{0} \in U$ if there is an interval $I=(a, b)$ with $x_{0} \in I$ and $f\left(x_{0}\right) \geqslant f(x)$ for all $x \in I \cap U$.
- f has a global maximum in $x_{0} \in U$ if $f\left(x_{0}\right) \geqslant f(x)$ for all $x \in U$.

Extrema

Let

$$
\begin{aligned}
f: & \mathbb{R} \\
& \longrightarrow \mathbb{R} \\
& x
\end{aligned} \longmapsto f(x)
$$

be a function that is differentiable in $x_{0} \in \mathbb{R}$, i.e. the derivative $\frac{d}{d x} f\left(x_{0}\right)$ exists. If

$$
\frac{d}{d x} f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=0
$$

and the derivative f^{\prime} is differentiable in x_{0} then

$$
\begin{cases}\frac{d^{2}}{d x^{2}} f\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)>0 & \Rightarrow f\left(x_{0}\right) \text { is a local minimum of } f \\ \frac{d^{2}}{d x^{2}} f\left(x_{0}\right)=f^{\prime \prime}\left(x_{0}\right)<0 & \Rightarrow f\left(x_{0}\right) \text { is a local maximum of } f\end{cases}
$$

attained in x_{0}. No general statement is possible for $f^{\prime \prime}\left(x_{0}\right)=0$.

Extrema

Determine the extrema of the function

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto f(x):=x^{2}
\end{aligned}
$$

and of the function

$$
\begin{aligned}
& g: \mathbb{R} \\
& \longrightarrow \mathbb{R} \\
& x \\
& \longmapsto g(x):=-x^{2}
\end{aligned}
$$

Extrema

The derivative of the function

$$
\begin{aligned}
f: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto f(x):=x^{2}
\end{aligned}
$$

is $f^{\prime}(x)=2 x$ and has a zero in $x_{0}=0$, i.e. $f^{\prime}(0)=0$. The second derivative is $f^{\prime \prime}(x)=2$, hence $f^{\prime \prime}(0)=2>0$ and $f(0)=0$ is a local minimum of f. It is attained in $x_{0}=0$.
This function has no maximum.

Extrema

The function

$$
\begin{aligned}
g: \mathbb{R} & \longrightarrow \mathbb{R} \\
x & \longmapsto g(x):=-x^{2}
\end{aligned}
$$

has a local maximum $g(0)=0$ that is attained in $x_{0}=0$. This function has no minimum.

Extrema

We now restrict the domain to closed intervals.

$$
\begin{aligned}
f:[-1,2] & \longrightarrow \mathbb{R} \\
x & \longmapsto f(x):=x^{2} .
\end{aligned}
$$

Since $0 \in[-1,2]$, this function has a local minimum $f(0)=0$ in $x_{0}=0$.

Extrema

We now have to evaluate f in the boundaries $x_{1}=$ -1 and $x_{2}=2$ of the interval $[-1,2]$ and get

$$
f(-1)=1, \quad f(2)=4
$$

Hence

$$
f(-1)>f(0), \quad f(0)<f(2) \text { and } f(-1)<f(2) .
$$

The function has a global minimum 0 in 0 . It has a global maximum $f(2)=4$ in $x_{2}=2$ and a local maximum $f(-1)=1$ in $x_{1}=-1$.

There is no exercise class this Friday, but there will be one tomorrow!

See you tomorrow!

