Mathematics

Cornelia Busch

D-ARCH

October 2, 2023

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f : [0, 24] \rightarrow \mathbb{R}$

$$f(x) = \frac{1}{4}x - \frac{1}{96}x^2$$

▲□▶▲□▶▲□▶▲□▶ □ の�?

where $x \in \mathbb{R}$ gives the time in hours.

When did it rain the heaviest?

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f : [0, 24] \rightarrow \mathbb{R}$

$$f(x) = \frac{1}{4}x - \frac{1}{96}x^2$$
,

where $x \in \mathbb{R}$ gives the time in hours.

When did it rain the heaviest?

We determine the extrema.

$$f'(x) = \frac{1}{4} - \frac{1}{48}x = 0 \quad \Longleftrightarrow \quad x = 12$$

Since $f''(x) = -\frac{1}{48} < 0$, the function attains a local maximum in x = 12, with $f(12) = \frac{3}{4}$. The function is defined on a closed interval. Hence we evaluate it on the boundaries. f(0) = f(24) = 0.

It started raining at midnight and stopped 24 hours later. It rained heaviest at noon.

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f : [0, 24] \rightarrow \mathbb{R}$

$$f(x) = \frac{1}{4}x - \frac{1}{96}x^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへぐ

where $x \in \mathbb{R}$ gives the time in hours.

How many water fell on a square meter on that day?

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f : [0, 24] \rightarrow \mathbb{R}$

$$f(x) = \frac{1}{4}x - \frac{1}{96}x^2$$

where $x \in \mathbb{R}$ gives the time in hours.

How many water fell on a square meter on that day?

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f : [0, 24] \rightarrow \mathbb{R}$

$$f(x) = \frac{1}{4}x - \frac{1}{96}x^2$$

where $x \in \mathbb{R}$ gives the time in hours.

How many water fell on a square meter on that day? We integrate:

$$\int_0^{24} f(x) \, dx = \int_0^{24} \frac{1}{4} x - \frac{1}{96} x^2 \, dx$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Integration

Given a function

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$

 $x \longmapsto f(x)$

we compute the area between the graph $(x, f(x)), x \in [a, b]$, and the interval [a, b], a < b.

We first cut the area in very thin stripes of width $\Delta x = \frac{b-a}{n}$ and approximate it with

$$\sum_{k=1}^n \Delta x f(\widetilde{x}_k), \quad a+(k-1)\Delta x \leqslant \widetilde{x}_k \leqslant a+k\,\Delta x.$$

lf

$$f(\widetilde{x}_k) = \max\{f(x) \mid a + (k-1)\Delta x \leqslant x \leqslant a + k\Delta x\}$$

we get an upper sum.

lf

$$f(\widetilde{x}_k) = \min\{f(x) \mid a + (k-1)\Delta x \leq x \leq a + k\Delta x\}$$

we get a lower sum.

We define the integral of f on the interval [a, b]

$$\int_a^b f(x) \, dx := \lim_{n \to \infty} \sum_{k=1}^n \Delta x \, f(\widetilde{x}_k) \, .$$

If the limit exists, then the limit of the upper sum equals the limit of the lower sum.

This integral is called the

Riemann integral.

Let $f : \operatorname{dom}(f) \to \mathbb{R}$. If $[a, b] \subseteq \operatorname{dom}(f)$, then the integral

$$\int_{a}^{b} f(x) \, dx$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

is the definite integral of f on [a, b].

The integral

$$\int_a^b f(x)\,dx\,,\quad a< b\,,$$

determines the area between the x-axis and the graph of f on the interval [a, b], where the area above the x-axis contributes to the integral with a positive sign and the area below the x-axis contributes with a negative sign.

Compare

 $\int_0^\pi \sin(x)\,dx$

with

 $\int_0^{2\pi} \sin(x) \, dx$

◆□▶◆□▶◆□▶◆□▶ □ のへで

$$\int_0^\pi \sin(x)\,dx=2$$

but

$$\int_0^{2\pi} \sin(x) \, dx = 0$$

Main theorem of integration theory

A function $F : \operatorname{dom}(F) \to \mathbb{R}$, $\operatorname{dom}(F) \subseteq \mathbb{R}$ that satisfies

$$\frac{d}{dx}F(x)=F'(x)=f(x)$$

is called the antiderivative of f. Two different antiderivatives of f differ by a constant. The set of all antiderivatives of f is called the indefinite integral of f.

$$\int f(x) \, dx := \left\{ F(x) \mid \frac{d}{dx} F(x) = f(x) \right\}$$
$$= \left\{ F(x) + c \mid c \in \mathbb{R}, \text{ } F \text{ is an antiderivative of } f \right\}.$$

Main theorem of integration theory

Given a function $f : \mathbb{R} \to \mathbb{R}$ with antiderivative

$$F:\mathbb{R}\to\mathbb{R}$$
.

The definite integral of f on [a, b] equals

$$\int_a^b f(x)\,dx = F(b) - F(a)\,.$$

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = → ○ < ○

$$\int_{0}^{2} 3x^{2} dx = x^{3} \Big|_{0}^{2} = 8$$

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(x) dx = \sin(x) \Big|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 1 - (-1) = 2$$

$$\int 2x \cos(x^{2}) dx = \sin(x^{2}) + C, \quad C \in \mathbb{R}$$

<ロ> <0</p>