Mathematics

Cornelia Busch

D－ARCH

October 2， 2023

Problem

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f:[0,24] \rightarrow \mathbb{R}$

$$
f(x)=\frac{1}{4} x-\frac{1}{96} x^{2}
$$

where $x \in \mathbb{R}$ gives the time in hours.

- When did it rain the heaviest?

Problem

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f:[0,24] \rightarrow \mathbb{R}$

$$
f(x)=\frac{1}{4} x-\frac{1}{96} x^{2}
$$

where $x \in \mathbb{R}$ gives the time in hours.

- When did it rain the heaviest?

We determine the extrema.

$$
f^{\prime}(x)=\frac{1}{4}-\frac{1}{48} x=0 \quad \Longleftrightarrow \quad x=12
$$

Since $f^{\prime \prime}(x)=-\frac{1}{48}<0$, the function attains a local maximum in $x=12$, with $f(12)=\frac{3}{4}$. The function is defined on a closed interval. Hence we evaluate it on the boundaries. $f(0)=f(24)=0$.
It started raining at midnight and stopped 24 hours later. It rained heaviest at noon.

Problem

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f:[0,24] \rightarrow \mathbb{R}$

$$
f(x)=\frac{1}{4} x-\frac{1}{96} x^{2},
$$

where $x \in \mathbb{R}$ gives the time in hours.

- How many water fell on a square meter on that day?

Problem

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f:[0,24] \rightarrow \mathbb{R}$

$$
f(x)=\frac{1}{4} x-\frac{1}{96} x^{2}
$$

where $x \in \mathbb{R}$ gives the time in hours.

- How many water fell on a square meter on that day?

Problem

On a rainy day, the number of litre of water falling per hour on a square meter was given by the function $f:[0,24] \rightarrow \mathbb{R}$

$$
f(x)=\frac{1}{4} x-\frac{1}{96} x^{2},
$$

where $x \in \mathbb{R}$ gives the time in hours.

- How many water fell on a square meter on that day?

We integrate:

$$
\int_{0}^{24} f(x) d x=\int_{0}^{24} \frac{1}{4} x-\frac{1}{96} x^{2} d x
$$

Integration

Given a function

$$
\begin{aligned}
f: & \mathbb{R}
\end{aligned}>\mathbb{R}, ~ 子 f(x)
$$

we compute the area between the graph $(x, f(x)), x \in[a, b]$, and the interval $[a, b], a<b$.

Integral

We first cut the area in very thin stripes of width $\Delta x=\frac{b-a}{n}$ and approximate it with

$$
\sum_{k=1}^{n} \Delta x f\left(\widetilde{x}_{k}\right), \quad a+(k-1) \Delta x \leqslant \widetilde{x}_{k} \leqslant a+k \Delta x .
$$

Integral

If

$$
f\left(\widetilde{x}_{k}\right)=\max \{f(x) \mid a+(k-1) \Delta x \leqslant x \leqslant a+k \Delta x\}
$$

we get an upper sum.

Integral

If

$$
f\left(\widetilde{x}_{k}\right)=\min \{f(x) \mid a+(k-1) \Delta x \leqslant x \leqslant a+k \Delta x\}
$$

we get a lower sum.

Integral

We define the integral of f on the interval $[a, b]$

$$
\int_{a}^{b} f(x) d x:=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \Delta x f\left(\widetilde{x}_{k}\right)
$$

If the limit exists, then the limit of the upper sum equals the limit of the lower sum.
This integral is called the
Riemann integral.

Integral

Let $f: \operatorname{dom}(f) \rightarrow \mathbb{R}$. If $[a, b] \subseteq \operatorname{dom}(f)$, then the integral

$$
\int_{a}^{b} f(x) d x
$$

is the definite integral of f on $[a, b]$.

Integral

The integral

$$
\int_{a}^{b} f(x) d x, \quad a<b
$$

determines the area between the x-axis and the graph of f on the interval $[a, b]$, where the area above the x-axis contributes to the integral with a positive sign and the area below the x-axis contributes with a negative sign.

Integral

Compare

$$
\int_{0}^{\pi} \sin (x) d x
$$

with

$$
\int_{0}^{2 \pi} \sin (x) d x
$$

Integral

$$
\int_{0}^{\pi} \sin (x) d x=2
$$

but

$$
\int_{0}^{2 \pi} \sin (x) d x=0
$$

Main theorem of integration theory

A function $F: \operatorname{dom}(F) \rightarrow \mathbb{R}, \operatorname{dom}(F) \subseteq \mathbb{R}$ that satisfies

$$
\frac{d}{d x} F(x)=F^{\prime}(x)=f(x)
$$

is called the antiderivative of f. Two different antiderivatives of f differ by a constant. The set of all antiderivatives of f is called the indefinite integral of f.

$$
\begin{aligned}
\int f(x) d x & :=\left\{F(x) \left\lvert\, \frac{d}{d x} F(x)=f(x)\right.\right\} \\
& =\{F(x)+c \mid c \in \mathbb{R}, F \text { is an antiderivative of } f\}
\end{aligned}
$$

Main theorem of integration theory

Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ with antiderivative

$$
F: \mathbb{R} \rightarrow \mathbb{R}
$$

The definite integral of f on $[a, b]$ equals

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Integral
$-\int_{0}^{2} 3 x^{2} d x$
$-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) d x$
$-\int 2 x \cos \left(x^{2}\right) d x$

Integral

$-\int_{0}^{2} 3 x^{2} d x=\left.x^{3}\right|_{0} ^{2}=8$
$-\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos (x) d x=\left.\sin (x)\right|_{-\frac{\pi}{2}} ^{\frac{\pi}{2}}=1-(-1)=2$
$-\int 2 x \cos \left(x^{2}\right) d x=\sin \left(x^{2}\right)+C, \quad C \in \mathbb{R}$

