Mathematics
 Complex numbers

Cornelia Busch
D-ARCH

October 16, 2023

Last week

Definition of complex numbers.

- Complex plane: cartesian coordinates.
- Complex numbers: polar form

Today?

- Powers and roots.

Addition of complex numbers

The addition of complex numbers corresponds to an addition of vectors. We choose the cartesian form. Let $z_{1}, z_{2} \in \mathbb{C}$, then $z=z_{1}+z_{2}$ is determined as follows.

Product of complex numbers

We choose the polar form. The product of $z_{1}=r_{1} e^{i \varphi_{1}}$ and $z_{2}=r_{2} e^{i \varphi_{2}}$ is

$$
z=z_{1} \cdot z_{2}=r_{1} e^{i \varphi_{1}} \cdot r_{2} e^{i \varphi_{2}}=r_{1} r_{2} e^{i \varphi_{1}} e^{i \varphi_{2}}=r_{1} r_{2} e^{i\left(\varphi_{1}+\varphi_{2}\right)}=r e^{i \varphi}
$$

Rotation in the complex plane

The multiplication with a number of modulus $r=1$ represents a rotation in the complex plane. Indeed the product of $z_{1}=r_{1} e^{i \varphi_{1}}$ and $z_{2}=e^{i \varphi_{2}}$ is

$$
z=z_{1} \cdot z_{2}=r_{1} e^{i \varphi_{1}} \cdot e^{i \varphi_{2}}=r_{1} e^{i\left(\varphi_{1}+\varphi_{2}\right)}
$$

Exponent

Compute for some $n \in \mathbb{Z}$ the n-th power z^{n} of $z=r e^{i \varphi}$.

$$
z^{n}=r^{n}\left(e^{i \varphi}\right)^{n}=r^{n} e^{i n \varphi}
$$

If we set $r=1$, then we have $z=e^{i \varphi}$ and

$$
z^{n}=\left(e^{i \varphi}\right)^{n}=e^{i n \varphi}
$$

Depending on n and on $\varphi \in]-\pi, \pi]$, we might have $n \varphi \notin]-\pi, \pi]$. For example if $\varphi=\frac{\pi}{3}$, then $\left.\left.4 \varphi=\frac{4 \pi}{3} \notin\right]-\pi, \pi\right]$, but

$$
e^{i \frac{4 \pi}{3}}=e^{i\left(\frac{-2 \pi}{3}+2 \pi\right)}
$$

since

$$
e^{i \varphi}=e^{i(\varphi+2 k \pi)} \quad \text { for any } \varphi \in \mathbb{R} \text { and any } k \in \mathbb{Z}
$$

Root

An n-th root of $r e^{i \varphi}$ is a solution of the equation

$$
z^{n}=r e^{i \varphi}=r e^{i(\varphi+k 2 \pi)}, \quad k \in \mathbb{Z} .
$$

Hence every

$$
z_{k}=r^{\frac{1}{n}} e^{i\left(\frac{\varphi}{n}+k \frac{2 \pi}{n}\right)}, \quad k \in \mathbb{Z}
$$

is a solution of $z^{n}=1=e^{i k 2 \pi}$. Since

$$
z_{k}=r^{\frac{1}{n}} e^{i\left(\frac{\varphi}{n}+k \frac{2 \pi}{n}\right)}=r^{\frac{1}{n}} e^{i\left(\frac{\varphi}{n}+(k+n) \frac{2 \pi}{n}\right)}=z_{k+n}
$$

only $z_{0}, z_{1}, \ldots, z_{n-1}$ are pairwise different.

Roots of 1

An n-th root of 1 is a solution of the equation

$$
z^{n}=1=e^{i k 2 \pi}, \quad k \in \mathbb{Z}
$$

Hence every

$$
z_{k}=e^{i k \frac{2 \pi}{n}}, \quad k \in \mathbb{Z}
$$

is a solution of $z^{n}=1=e^{i k 2 \pi}$.

Roots of 1

In the complex plane the solutions of the n-th root of 1 lie on a regular polygon with n vertices.

Question

What are the vertices of the following regular polygon?

Question

The vertices of the following regular polygon are the third roots of -1 .

Proof by induction

Prove de Moivre's Theorem

$$
(\cos \varphi+i \sin \varphi)^{n}=\cos n \varphi+i \sin n \varphi
$$

by induction on n.

- You first prove the case $n=1$ and
- then you show that if the claim holds for $n-1$, then it also holds for n.

Next chapter!

