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Complex numbers
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▶ Multivariable functions: Introduction
▶ Scalar fields



Introduction

Curves f : R → Rn Length of curves, line integrals, curvature

Surfaces f : R2 → Rn Areas of surfaces, surface integrals,
flux through surfaces, curvature

Scalar fields f : Rn → R Maxima and minima, Lagrange multipliers,
directional derivatives

Vector fields f : Rm → Rn Any of the operations of vector calculus,
gradient, divergence, curl



Curve in the plane
The curve given by

f : R −→ R2

t 7−→ f (t) := (cos t , sin t)

is the unit circle in the plane.

x

y

f (t) = (cos t , sin t)
t



Curve in the 3-dimensional space
The curve parametrized with

f : R −→ R3

t 7−→ (cos t , sin t , t)

is a line that "screws upwards".



2-dim surface in a 3-dimensional space

Parametrisation of a torus: f : [0,2π[×[0,2π[→ R3

(θ, φ) 7−→
((

R + r cos(θ)
)
cos(φ),

(
R + r cos(θ)

)
sin(φ), sin(θ)

)



Scalar fields

In this section we consider functions

f : Rn −→ R
x 7−→ f (x)

that map points x = (x1, . . . , xn) in Rn to scalars f (x1, . . . , xn). If D ⊂ Rn, then the graph{(
x , f (x)

)
∈ Rn × R | x ∈ D

}
describes a surface over D.

The function f may represent the metres above sea level of a point on a map or the
temperature at a point in a space.



Level set

The level set of the function
f : Rn −→ R

x 7−→ f (x)

to the level c ∈ R is the set

f−1(c) :=
{
(x1, . . . , xn) ∈ Rn | f (x1, . . . , xn) = c

}
.

On the examples above it corresponds to the points at the same altitude or with the same
temperature.



Example
Consider the function

f : R2 → R
(x , y) 7→ f (x , y) := e−(x2+y2)

What are its level sets?



Example
The level set of f to the level c ∈ R is the set of points (x , y) ∈ R2 that satisfy f (x , y) = c,
where c is a constant. Since

c = e−(x2+y2) ⇔ x2 + y2 = C ,

where C ∈ R is a constant, we get the level lines

x2 + y2 = C = r2 .

These are circles with radius r centred in (0,0).



Partial derivatives
Let f : Rn → R be a function in n variables. We fix a point

x0 = (x0
1 , . . . , x

0
n ) ∈ Rn

and consider the line

Li := {(x0
1 , . . . , x

0
i−1, xi , x0

i+1, . . . , x
0
n ) ∈ Rn | xi ∈ R} .

This line is parallel to the xi -axis and goes through x0. Then the set

Ci(x0) := {(x0
1 , . . . , x

0
i−1, xi , x0

i+1, . . . , x
0
n , f (. . . x

0
i−1, xi , x0

i+1, . . . )) | xi ∈ R}

is a curve over the line Li . It is the graph of the function

φi : R −→ R
xi 7−→ f (x0

1 , . . . , x
0
i−1, xi , x0

i+1, . . . , x
0
n ) .



Partial derivatives

φi : R −→ R
xi 7−→ f (x0

1 , . . . , x
0
i−1, xi , x0

i+1, . . . , x
0
n ) .

We consider the derivative of φi with respect to the variable xi in the point x0. This is
called the partial derivative of f in x0 with respect to xi and written

fi(x0) or
∂f
∂xi

(x0) .

It is defined to be the limit

fi(x0) := lim
∆x→0

f (x0
1 , . . . , x0

i +∆x , . . . , x0
n )− f (x0

1 , . . . , x
0
i , . . . , x

0
n )

∆x
.



Partial derivatives

The tangent at Ci(x0) in p =
(
x0, f (x0)

)
is given by{(

x0, f (x0)
)
+

∂

∂xi
f (x0)(xi − x0

i )

∣∣∣∣ xi ∈ R
}

.

The tangents Ci(x0), i = 1, . . . ,n, span the tangent vector space

TpS

at the surface S in p.



Partial derivatives
We cut the graph of the function

f : R2 → R
(x , y) 7→ f (x , y) := e−(x2+y2) .

along the plane y = 0.



Example

Determine the partial derivatives. We choose the point p0 = (x0, y0). The line
L1 := {(x , y0) ∈ R2 | x ∈ R} is parallel to the x-axis and passes through p0. Then the set

C1(p0) := {(x , y0, f (x , y0)) | x ∈ R}

is a curve over the line L1. It is the graph of the function

φ1 : R −→ R
x 7−→ f (x , y0) = e−(x2+y2

0 ) .

The partial derivative of f in p0 = (x0, y0) with respect to x is

fx(p0) =
∂

∂x
f (p0) = −2x e−(x2+y2)

∣∣∣
(x0,y0)

= −2x0 e−(x2
0+y2

0 ) .



Example

With an analogous argument we see that the partial derivative of f in p0 = (x0, y0) with
respect to y is

fy (p0) =
∂

∂y
f (p0) = −2y e−(x2+y2)

∣∣∣
(x0,y0)

= −2y0 e−(x2
0+y2

0 ) .



The gradient

We assume that all partial derivatives ∂
∂xi

f , i = 1, . . . ,n of the function

f : D −→ R
x 7−→ f (x)

exist and that they are continuous. Then the vector

∇f (x0) :=

(
∂

∂x1
f (x0), . . . ,

∂

∂xn
f (x0)

)
is defined and called the gradient of f in x0.



Example

Compute the gradient of the function

f : R2 → R
(x , y) 7→ f (x , y) := e−(x2+y2) .

in (x , y).



Example

Compute the gradient of the function

f : R2 → R
(x , y) 7→ f (x , y) := e−(x2+y2) .

in (x , y) is

∇f (x , y) =
(

∂

∂x
f (x , y),

∂

∂y
f (x , y)

)
=

(
fx(x , y), fy (x , y)

)
=

(
−2x e−(x2+y2),−2y e−(x2+y2)

)
= 2 e−(x2+y2)

(
−x ,−y

)
=

2
e(x2+y2)

(
−x ,−y

)



Example

∇f (x , y) =
2

e(x2+y2)

(
−x ,−y

)
In any point (x , y) ∈ R2 the gradient points to the origin (0,0) and its length depends on
the norm

√
x2 + y2 of the vector (x , y), hence on the distance of (x , y) to the origin.



The gradient: a property

The gradient ∇f (x0) is perpendicular to the level set

f−1(f (x0)
)
:=

{
(x1, . . . , xn) ∈ Rn | f (x1, . . . , xn) = f (x0)

}
.



Example: Gradient and level sets
The level sets of the function

f : R2 → R
(x , y) 7→ f (x , y) := e−(x2+y2)

are circles and the gradient of f in the point (x , y) is parallel to (−x ,−y) and points to the
origin. As we can see it on the figure, the gradient is perpendicular to the circles.



This week there will an exercise class on Friday!

Have a nice week!


