Mathematics

IBS

Cornelia Busch

ETH Zürich

October 23, 2023

Introduction: an example

We start with a set with $N(t)$ elements at the time t. They can be split into three groups S, I and R with the number of elements $S(t), I(t)$ and $R(t)$.

Hence at any time $t>0$ we have

$$
S(t)+I(t)+R(t)=N(t)
$$

We choose $N(t)=N$ to be constant.

Introduction: an example

- An S-element may become I and
- every l-element becomes R.
- Each R-element stays R.

Hence

$$
S \xrightarrow{\lambda} I \xrightarrow{\gamma} R
$$

Here λ and γ are the rates of change, i.e. the number of individuals per time unit that change the group.

Examples can be found in chemical reactions.

Differential equation

A system of differential equations defines the partition of N, hence the functions $S(t)$, I (t) and $R(t)$.

$$
\begin{aligned}
& \frac{d S}{d t}=-\lambda S \\
& \frac{d I}{d t}=\lambda S-\gamma I \\
& \frac{d R}{d t}=\gamma I
\end{aligned}
$$

In a few weeks you will be able to solve the system for constant λ and γ.

Differential equation

Unfortunately λ is not a constant but it depends on I

$$
\lambda=\beta \frac{l}{N}
$$

and we have

$$
\begin{aligned}
\frac{d S}{d t} & =-\beta \frac{S I}{N} \\
\frac{d I}{d t} & =\beta \frac{S I}{N}-\gamma I \\
\frac{d R}{d t} & =\gamma I
\end{aligned}
$$

SIR-model

This is the SIR-model: a model for an epidemic within a population.

Susceptible
 Infected
 Removed

Removed individuals may also be called Resistent.
Assumptions:

- Immediately after having been infected, a person is infectious.
- After the recovery a person is immune.

SIR-model

In fact β can be written as a product

$$
\beta=q \cdot \kappa,
$$

where

- κ is the rate of contacts and
- q is the probability of infection in case of contact to an infectious person.

The home-office and remote-teaching reduce κ. Our masks reduce q.

SIR-model

The proportion of infected persons amongst the whole population is $\frac{1}{N}$. It is the probability that a given person is infected.

The force of infection is

$$
\lambda=\beta \frac{l}{N}
$$

The basic reproduction number is

$$
R_{0}=\frac{\beta}{\gamma}
$$

SIR-model

The solution with $N=1000, S(0)=997, I(0)=3, R(0)=0, \beta=0.4$ and $\gamma=0.04$. The time unit is a day.

Graph by Klaus-Dieter Keller, https://de.wikipedia.org/wiki/SIR-Modell

