Mathematics

Cornelia Busch

ETH Zürich
October 31, 2023

Linear ODE

A linear differential equation is defined by a linear polynomial in the unknown function $y(x)$ and its derivatives $y^{(i)}(x)$.

This is an equation of the form

$$
p_{n}(x) y^{(n)}(x)+\ldots+p_{2}(x) y^{\prime \prime}(x)+p_{1}(x) y^{\prime}(x)+p_{0}(x) y(x)=q(x)
$$

where $p_{0}(x), \ldots, p_{n}(x)$ and $q(x)$ are arbitrary differentiable functions. They do not need to be linear.

Linear inhomogeneous ODE

The differential equation is called inhomogeneous if $q(x) \neq 0$

$$
p_{n}(x) y^{(n)}(x)+\ldots+p_{2}(x) y^{\prime \prime}(x)+p_{1}(x) y^{\prime}(x)+p_{0}(x) y(x)=q(x)
$$

and it is called homogeneous if $q(x)=0$, i.e. if

$$
p_{n}(x) y^{(n)}(x)+\ldots+p_{2}(x) y^{\prime \prime}(x)+p_{1}(x) y^{\prime}(x)+p_{0}(x) y(x)=0
$$

Given an inhomogeneous linear differential equation, we get the corresponding homogeneous linear differential equation by replacing the function $q(x)$ with the zero function.

An important property

Let $y_{1}(x)$ and $y_{2}(x)$ be two different solutions of the inhomogeneous first order linear differential equation

$$
p_{1}(x) y^{\prime}(x)+p_{0}(x) y(x)=q(x)
$$

Then

$$
\begin{aligned}
& p_{1}(x) y_{1}^{\prime}(x)+p_{0}(x) y_{1}(x)=q(x) \\
& p_{1}(x) y_{2}^{\prime}(x)+p_{0}(x) y_{2}(x)=q(x)
\end{aligned}
$$

An important property

Hence the difference $\left(y_{1}-y_{2}\right)(x)$ satisfies

$$
\begin{aligned}
p_{1}(x) & \left(y_{1}-y_{2}\right)^{\prime}(x)+p_{0}(x)\left(y_{1}-y_{2}\right)(x) \\
& =p_{1}(x) y_{1}^{\prime}(x)-p_{1}(x) y_{2}^{\prime}(x)+p_{0}(x) y_{1}(x)-p_{0}(x) y_{2}(x) \\
& =\underbrace{p_{1}(x) y_{1}^{\prime}(x)+p_{0}(x) y_{1}(x)}_{=q(x)}-(\underbrace{p_{1}(x) y_{2}^{\prime}(x)+p_{0}(x) y_{2}(x)}_{=q(x)}) \\
& =0
\end{aligned}
$$

This shows that the difference of two solutions of the inhomogeneous linear ODE is a solution of the corresponding homogeneous linear ODE.

This is true for any order by a similar argument than the one for the first order.

An important property

The following is true for inhomogeneous linear differential equations.
the general solution of an inhomogeneous linear differential equation
$=$
the general solution of the corresponding homogeneous linear differential equation
$+$
the particular solution of the inhomogeneous linear differential equation.

First order linear ODEs

The method to solve an inhomogeneous linear ODE is the following.

1) First determine the general solution y_{h} of the corresponding homogeneous ODE.
2) Then find a particular solution y_{p} of the inhomogeneous ODE.
3) The general solution of the inhomogeneous linear ODE is

$$
y=y_{h}+y_{p}
$$

First order linear ODEs

In order to solve

$$
y^{\prime}(x)+p(x) y(x)=q(x)
$$

First we determine the general solution y_{h} of

$$
y^{\prime}(x)+p(x) y(x)=0
$$

We then determine a particular solution y_{p} of

$$
y^{\prime}(x)+p(x) y(x)=q(x)
$$

The general solution of our differential equation is

$$
y(x)=y_{p}(x)+y_{h}(x)
$$

First order linear ODE: example 1

Find the general solution of the following differential equation.

$$
y^{\prime}-2 x y=x
$$

First order linear ODE: example 1
The general solution of the corresponding homogeneous differential equation

$$
y^{\prime}-2 x y=0
$$

is found by

$$
\begin{aligned}
\frac{d y}{d x} & =2 x y \\
\frac{1}{y} d y & =2 x d x \\
\int \frac{1}{y} d y & =\int 2 x d x \\
\ln |y| & =x^{2}+c \\
y & =e^{x^{2}+c}
\end{aligned}
$$

First order linear ODE: example 1

The general solution of the homogeneous ODE is

$$
y_{h}(x)=C e^{x^{2}} .
$$

We find the particular solution of the inhomogeneous first order linear ODE by the method of variation of constants.

We guess

$$
y_{p}(x)=C(x) e^{x^{2}}
$$

We have to find the function $C(x)$.

First order linear ODE: example 1

In order to determine $C(x)$ we plug our guess $y_{p}(x)=C(x) e^{x^{2}}$ into the ODE

$$
y^{\prime}-2 x y=x
$$

With

$$
y_{p}^{\prime}(x)=C^{\prime}(x) e^{x^{2}}+C(x) \cdot 2 x e^{x^{2}}
$$

we get

$$
\begin{aligned}
y_{p}^{\prime}(x)-2 x y_{p}(x) & =C^{\prime}(x) e^{x^{2}}+2 x C(x) e^{x^{2}}-2 x C(x) e^{x^{2}} \\
& =C^{\prime}(x) e^{x^{2}}
\end{aligned}
$$

Now we solve

$$
C^{\prime}(x) e^{x^{2}}=x
$$

First order linear ODE: example 1
Now we solve

$$
C^{\prime}(x) e^{x^{2}}=x
$$

and get

$$
\begin{aligned}
C^{\prime}(x) & =x e^{-x^{2}} \\
C(x) & =\int x e^{-x^{2}} d x=-\frac{1}{2} e^{-x^{2}}+C_{1}
\end{aligned}
$$

Hence

$$
y_{p}(x)=C(x) e^{x^{2}}=-\frac{1}{2}+C_{1} e^{x^{2}}
$$

and the general solution is

$$
y(x)=y_{p}(x)+y_{h}(x)=-\frac{1}{2}+C e^{x^{2}}
$$

First order linear ODE: example 2

Find the maximal solution of the initial value problem

$$
y^{\prime}-y \cdot \tan x=\cos ^{2} x \quad \text { with } \quad y(0)=1
$$

First order linear ODE: example 2

The general solution of the corresponding homogeneous differential equation

$$
y^{\prime}-y \cdot \tan x=0
$$

is found by

$$
\begin{aligned}
\frac{d y}{d x} & =y \cdot \tan x \\
\int \frac{1}{y} d y & =\int \tan x d x \\
\ln |y| & =-\ln |\cos x|+c
\end{aligned}
$$

for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right),\left(x_{0}=0\right)$.

First order linear ODE: example 2

The general solution of the homogeneous ODE is

$$
y_{n}(x)=C \cdot \frac{1}{|\cos x|} .
$$

for $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
We guess

$$
y_{p}(x)=C(x) \frac{1}{\cos x} .
$$

We have to find the function $C(x)$.

First order linear ODE: example 2

In order to determine $C(x)$ we plug our guess $y_{p}(x)=C(x) \frac{1}{\cos x}$ into the ODE

$$
y^{\prime}-y \cdot \tan x=\cos ^{2} x
$$

With

$$
y_{p}^{\prime}(x)=C^{\prime}(x) \frac{1}{\cos x}+C(x) \cdot \frac{\tan x}{\cos x}
$$

we get

$$
\begin{aligned}
y_{p}^{\prime}(x)-y_{p}(x) \cdot \tan x & =C^{\prime}(x) \frac{1}{\cos x}+C(x) \cdot \frac{\tan x}{\cos x}-C(x) \cdot \frac{\tan x}{\cos x} \\
& =C^{\prime}(x) \frac{1}{\cos x}
\end{aligned}
$$

First order linear ODE: example 2

Now we solve

$$
C^{\prime}(x) \frac{1}{\cos x}=\cos ^{2} x
$$

and get

$$
\begin{aligned}
C(x) & =\int \cos ^{3}(x) d x \\
& =\sin x-\frac{1}{3} \sin ^{3} x
\end{aligned}
$$

Hence

$$
y_{p}(x)=\frac{\sin x-\frac{1}{3} \sin ^{3} x}{\cos x} \quad \text { with } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

First order linear ODE: example 2

The general solution is

$$
y(x)=\frac{C+\sin x-\frac{1}{3} \sin ^{3} x}{\cos x} \text { with } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

With the condition $y(0)=1$ we get $C=1$.

$$
y(x)=\frac{1+\sin x-\frac{1}{3} \sin ^{3} x}{\cos x} \quad \text { with } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

There will be an exercise class on Friday! Have a nice week!

