Mathematics

Cornelia Busch

ETH Zürich

October 31, 2023

◆□ ◆ ▲□ ◆ ▲□ ◆ ▲□ ◆ ▲□ ◆

Linear ODE

A linear differential equation is defined by a linear polynomial in the unknown function y(x) and its derivatives $y^{(i)}(x)$.

This is an equation of the form

$$p_n(x) y^{(n)}(x) + \ldots + p_2(x) y''(x) + p_1(x) y'(x) + p_0(x) y(x) = q(x)$$

where $p_0(x), \ldots, p_n(x)$ and q(x) are arbitrary differentiable functions. They do not need to be linear.

Linear inhomogeneous ODE

The differential equation is called inhomogeneous if $q(x) \neq 0$

$$p_n(x) y^{(n)}(x) + \ldots + p_2(x) y''(x) + p_1(x) y'(x) + p_0(x) y(x) = q(x)$$

and it is called homogeneous if q(x) = 0, i.e. if

$$p_n(x) y^{(n)}(x) + \ldots + p_2(x) y''(x) + p_1(x) y'(x) + p_0(x) y(x) = 0$$

Given an inhomogeneous linear differential equation, we get the corresponding homogeneous linear differential equation by replacing the function q(x) with the zero function.

An important property

Let $y_1(x)$ and $y_2(x)$ be two different solutions of the inhomogeneous first order linear differential equation

$$p_1(x) y'(x) + p_0(x) y(x) = q(x)$$

Then

$$p_1(x) y'_1(x) + p_0(x) y_1(x) = q(x)$$

$$p_1(x) y'_2(x) + p_0(x) y_2(x) = q(x)$$

(ロ) (型) (E) (E) (E) (O)()

An important property

Hence the difference $(y_1 - y_2)(x)$ satisfies

$$p_{1}(x) (y_{1} - y_{2})'(x) + p_{0}(x) (y_{1} - y_{2})(x)$$

$$= p_{1}(x) y_{1}'(x) - p_{1}(x) y_{2}'(x) + p_{0}(x) y_{1}(x) - p_{0}(x) y_{2}(x)$$

$$= \underbrace{p_{1}(x) y_{1}'(x) + p_{0}(x) y_{1}(x)}_{=q(x)} - \underbrace{(p_{1}(x) y_{2}'(x) + p_{0}(x) y_{2}(x))}_{=q(x)}$$

$$= 0$$

This shows that the difference of two solutions of the inhomogeneous linear ODE is a solution of the corresponding homogeneous linear ODE.

This is true for any order by a similar argument than the one for the first order.

An important property

The following is true for inhomogeneous linear differential equations.

the general solution of an inhomogeneous linear differential equation

the general solution of the corresponding homogeneous linear differential equation + the particular solution of the inhomogeneous linear differential equation.

▲□▶▲□▶▲□▶▲□▶ □ の�?

The method to solve an inhomogeneous linear ODE is the following.

- 1) First determine the general solution y_h of the corresponding homogeneous ODE.
- 2) Then find a particular solution y_p of the inhomogeneous ODE.
- 3) The general solution of the inhomogeneous linear ODE is

$$y = y_h + y_p$$

▲□▶▲□▶▲□▶▲□▶ □ の000

First order linear ODEs

In order to solve

$$y'(x) + p(x)y(x) = q(x).$$

First we determine the general solution y_h of

$$y'(x) + p(x)y(x) = 0$$
 .

We then determine a particular solution y_p of

$$y'(x) + p(x)y(x) = q(x).$$

The general solution of our differential equation is

$$y(x) = y_p(x) + y_h(x)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Find the general solution of the following differential equation.

$$y'-2xy=x$$

<□> <0</p>

The general solution of the corresponding homogeneous differential equation

$$y'-2xy=0$$

is found by

$$\frac{dy}{dx} = 2xy$$
$$\frac{1}{y}dy = 2x dx$$
$$\int \frac{1}{y}dy = \int 2xdx$$
$$\ln|y| = x^2 + c$$
$$y = e^{x^2 + c}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲国 ● ● ●

The general solution of the homogeneous ODE is

$$y_h(x) = C e^{x^2}$$
.

We find the particular solution of the inhomogeneous first order linear ODE by the method of variation of constants.

We guess

$$y_p(x)=C(x)\,e^{x^2}\,.$$

▲□▶▲□▶▲□▶▲□▶ □ の�?

We have to find the function C(x).

In order to determine C(x) we plug our guess $y_p(x) = C(x) e^{x^2}$ into the ODE

$$y'-2xy=x$$

With

$$y'_{p}(x) = C'(x) e^{x^{2}} + C(x) \cdot 2x e^{x^{2}}$$

we get

$$egin{aligned} y'_{
ho}(x) - 2xy_{
ho}(x) &= C'(x) \, e^{x^2} + 2x \, C(x) \, e^{x^2} - 2x \, C(x) \, e^{x^2} \ &= C'(x) \, e^{x^2} \end{aligned}$$

Now we solve

$$C'(x) e^{x^2} = x$$

・ロト・西ト・モート ヨー シタウ

Now we solve

$$C'(x) e^{x^2} = x$$

and get

$$C'(x) = xe^{-x^2}$$

 $C(x) = \int xe^{-x^2} dx = -\frac{1}{2}e^{-x^2} + C_1$

Hence

$$y_{\rho}(x) = C(x)e^{x^2} = -\frac{1}{2} + C_1e^{x^2}$$

and the general solution is

$$y(x) = y_p(x) + y_h(x) = -\frac{1}{2} + Ce^{x^2}$$

Find the maximal solution of the initial value problem

$$y' - y \cdot \tan x = \cos^2 x$$
 with $y(0) = 1$.

(ロ) (型) (主) (主) (三) のへで

The general solution of the corresponding homogeneous differential equation

 $y' - y \cdot \tan x = 0$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

is found by

$$rac{dy}{dx} = y \cdot \tan x$$
 $\int rac{1}{y} dy = \int \tan x \, dx$
 $\ln |y| = -\ln |\cos x| + c$
for $x \in \left(-rac{\pi}{2}, rac{\pi}{2}
ight)$, $(x_0 = 0)$.

The general solution of the homogeneous ODE is

$$y_h(x)=C\cdot\frac{1}{|\cos x|}\,.$$

for
$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
.

We guess

$$y_p(x)=\frac{C(x)}{\cos x}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

We have to find the function C(x).

In order to determine C(x) we plug our guess $y_p(x) = C(x) \frac{1}{\cos x}$ into the ODE

$$y' - y \cdot \tan x = \cos^2 x$$

With

$$y'_{
ho}(x) = C'(x) rac{1}{\cos x} + C(x) \cdot rac{\tan x}{\cos x}$$

we get

$$y'_p(x) - y_p(x) \cdot \tan x = C'(x) \frac{1}{\cos x} + C(x) \cdot \frac{\tan x}{\cos x} - C(x) \cdot \frac{\tan x}{\cos x}$$
$$= C'(x) \frac{1}{\cos x}$$

◆□ > ◆□ > ◆ □ > ◆ □ > → □ = → ○ < ○

First order linear ODE: example 2

Now we solve

$$C'(x)\,\frac{1}{\cos x}=\cos^2 x$$

and get

$$C(x) = \int \cos^3(x) dx$$
$$= \sin x - \frac{1}{3} \sin^3 x \, .$$

Hence

$$y_{\rho}(x) = rac{\sin x - rac{1}{3}\sin^3 x}{\cos x}$$
 with $x \in \left(-rac{\pi}{2}, rac{\pi}{2}
ight)$.

(ロ) (型) (E) (E) (E) の(C)

The general solution is

$$y(x) = \frac{C + \sin x - \frac{1}{3} \sin^3 x}{\cos x} \quad \text{with } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

With the condition y(0) = 1 we get C = 1.

$$y(x) = \frac{1 + \sin x - \frac{1}{3} \sin^3 x}{\cos x} \quad \text{with } x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

◆□▶◆□▶◆□▶◆□▶ □ のへで

There will be an exercise class on Friday! Have a nice week!