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Program

Last week
▶ Separation of variables.
▶ First order linear differential equations: variation of constants.
▶ Inhomogeneous linear differential equations.

Today
▶ Linear differential equations with constant coefficients.



Linear ODEs of order n with constant coefficients

A linear differential equation of order n is

x (n)(t) + an−1(t)x (n−1)(t) + . . .+ a1(t)ẋ(t) + a0(t)x(t) = r(t) .

If an−1(t), . . . ,a0(t) are constant (don’t depend on t), then the differential equation has
constant coefficients.

x (n)(t) + an−1x (n−1)(t) + . . .+ a1ẋ(t) + a0x(t) = r(t) .



Linear inhomogeneous ODE

We use the following method.
1) First determine the general solution xh of the corresponding homogeneous ODE.
2) Then find a particular solution xp of the inhomogeneous ODE.
3) The general solution of the inhomogeneous linear ODE is

x = xh + xp



General solution of the homogeneous ODE

We guess
x(t) = eλt , λ ∈ R

and plug this function in the homogeneous equation

x (n)(t) + an−1x (n−1)(t) + . . .+ a1ẋ(t) + a0x(t) = 0 .

With
x (i)(t) = λieλt

we get
λneλt + an−1λ

n−1eλt + . . . a1λeλt + a0eλt = 0

and
eλt(λn + an−1λ

n−1 + . . .+ a1λ+ a0) = 0 .



General solution of the homogeneous ODE

We consider the equation

eλt(λn + an−1λ
n−1 + . . .+ a1λ+ a0) = 0 .

Since eλt ̸= 0, it is equivalent to

λn + an−1λ
n−1 + . . .+ a1λ+ a0 = 0 .

We call
Q(λ) := λn + an−1λ

n−1 + . . .+ a1λ+ a0

the characteristic polynomial of the differential equation.

x (n) + an−1x (n−1) + . . .+ a1ẋ + a0x = 0 .



General solution of the homogeneous ODE

There are different cases:
1. Q(λ) has n different real zeros.
2. Q(λ) has zeros with multiplicity > 1.
3. Q(λ) has complex zeros.



General solution of the homogeneous ODE

If Q(λ) = 0 has n different real zeros λ1 , . . . , λn, then the differential equation has n linear
independent solutions:

eλ1t , . . . ,eλnt

The general solution is

x(t) =
n∑

i=1

cieλi t

with n constants c1, . . . , cn.



General solution of the homogeneous ODE

If λk is a zero with multiplicity p, then

eλk t , teλk t , t2eλk t , . . . , tp−1eλk t

are the p solutions corresponding to λk .

Their contribution to the general equation is

C0eλk t + C1teλk t + C2t2eλk t + · · ·+ Cp−1tp−1eλk t



General solution of the homogeneous ODE

By the previous scheme the pair of complex conjugate zeros

λ = α± iβ

would contribute with the complex solutions

e(α+iβ)t = eαt(cos(βt) + i sin(βt)
)

e(α−iβ)t = eαt(cos(βt)− i sin(βt)
)

but we want real functions. The functions

eαt cos(βt) and eαt sin(βt) .

are the real solutions. These are linearly independent.



General solution of the homogeneous ODE

If the multiplicity of the complex zero is p > 1 we have the solutions

eαt cos(βt) , t eαt cos(βt) , . . . , tp−1 eαt cos(βt) ,
eαt sin(βt) , t eαt sin(βt) , . . . , tp−1 eαt sin(βt) .



Particular solution of the inhomogeneous ODE

To find the particular solution of the inhomogeneous ODE

x (n)(t) + an−1(t)x (n−1)(t) + . . .+ a1(t)ẋ(t) + a0(t)x(t) = r(t)

we make a guess that depends on r(t).

See the examples!



Example 1

Determine all the solutions y(x) of the differential equation

y ′′ − y ′ − 6y = e−x .

that are bounded on the interval [0,∞[ and satisfy y(0) = 0.



Example 1

We first consider the homogeneous equation

y ′′ − y ′ − 6y = 0 .

The zeros of the characteristic polynomial

λ2 − λ− 6 = 0

are

λ1,2 =
1 ±

√
1 + 24
2

=
1 ± 5

2
=

{
3

−2
.

The general solution of the homogeneous equation is

yh(x) = c1e3x + c2e−2x .



Example 1

The guess for the special solution of the inhomogeneous equation

y ′′ − y ′ − 6y = e−x

is
y(x) = c e−x .

Then y ′ = −ce−x , y ′′ = ce−x and

y ′′ − y ′ − 6y = ce−x + ce−x − 6ce−x

= −4ce−x !
= e−x .

The particular solution is

yp(x) = − 1
4

e−x



Example 1

The general solution is

y(x) = yh(x) + yp(x) = c1e3x + c2e−2x − 1
4

e−x .

We study the solution on the interval [0,∞[:

eαx > 0 for α ∈ R, x ∈ R
e0 = 1
limx→∞ eαx = ∞ for α ∈ R, α > 0
limx→∞ eαx = 0 for α ∈ R, α < 0

therefore y(x) is bounded if and only if c1 = 0. The condition y(0) = 0 yields the solution

y(x) =
1
4

e−2x − 1
4

e−x .



Example 2

Determine all the solutions y(x) of the differential equation

y ′′ − y ′ − 2y = x2

that satisfy y(0) = 0 and y ′(0) = 1
2 .



Example 2

We first consider the homogeneous equation

y ′′ − y ′ − 2y = 0 .

The zeros of the characteristic polynomial

λ2 − λ− 2 = 0

are

λ1,2 =
1 ±

√
1 + 8

2
=

1 ± 3
2

=

{
2

−1
.

The general solution of the homogeneous equation is

yh(x) = c1e2x + c2e−x .



Example 2

The guess for the special solution of the inhomogeneous equation

y ′′ − y ′ − 2y = x2

is
y(x) = Ax2 + Bx + C .

Then y ′ = 2Ax + B, y ′′ = 2A and

y ′′ − y ′ − 2y = 2A − (2Ax + B)− 2(Ax2 + Bx + C)

= −2Ax2 − (2A + 2B)x + 2A − B − 2C
!
= x2 .



Example 2
Comparing the coefficients of both sides of

−2Ax2 − (2A + 2B)x + 2A − B − 2C = x2

we get the following system of equations

−2A = 1
−2A − 2B = 0

2A − B − 2C = 0

We see that
A = − 1

2
, B =

1
2
, C = − 3

4
The particular solution is

yp(x) = − 1
2

x2 +
1
2

x − 3
4
.



Example 2
The general solution is

y(x) = yh(x) + yp(x)

= c1e2x + c2e−x − 1
2

x2 +
1
2

x − 3
4
.

The conditions y(0) = 0 and y ′(0) = 1
2 define the constants c1 and c2.

Since
y ′(x) = 2c1e2x − c2e−x − x +

1
2
,

we get

y(0) = 0 = c1 + c2 −
3
4

y ′(0) =
1
2
= 2c1 − c2 +

1
2



Example 2

The solutions of the system

c1 + c2 =
3
4

2c1 − c2 = 0

are
c1 =

1
4
, c2 =

1
2
.

Hence the solution of our initial value problem is

y(x) =
1
4

e2x +
1
2

e−x − 1
2

x2 +
1
2

x − 3
4
.



Example 3

Determine all the solutions y(x) of the differential equation

y ′′ − y ′ − 2y = cos(x)

that satisfy y(0) = 0 and y ′(0) = 1
2 .

We already know the general solution of the homogeneous equation:

yh(x) = c1e2x + c2e−x .



Example 3
The guess for the special solution of the inhomogeneous equation

y ′′ − y ′ − 2y = cos(x)

is
y(x) = A cos(x) + B sin(x) .

Then

y ′ = −A sin(x) + B cos(x)
y ′′ = −A cos(x)− B sin(x)

and

y ′′ − y ′ − 2y = −A cos(x)− B sin(x)− (−A sin(x) + B cos(x))− 2(A cos(x) + B sin(x))
= (−3A − B) cos(x) + (A − 3B) sin(x)
!
= cos(x) .



Example 3
Comparing the coefficients of both sides of

(−3A − B) cos(x) + (A − 3B) sin(x) = cos(x)

we get the following system of equations

−3A − B = 1
A − 3B = 0

We see that
A = − 3

10
, B = − 1

10
The particular solution is

yp(x) = − 3
10

cos(x)− 1
10

sin(x) .



Example 3
The general solution is

y(x) = yh(x) + yp(x)

= c1e2x + c2e−x − 3
10

cos(x)− 1
10

sin(x) .

The conditions y(0) = 0 and y ′(0) = 1
2 define the constants c1 and c2.

Since
y ′(x) = 2c1e2x − c2e−x +

3
10

sin(x)− 1
10

cos(x) ,

we get

y(0) = 0 = c1 + c2 −
3
10

y ′(0) =
1
2
= 2c1 − c2 −

1
10



Example 3

The solutions of the system

c1 + c2 =
3

10

2c1 − c2 =
6

10

are
c1 =

3
10

, c2 = 0 .

Hence the solution of our initial value problem is

y(x) =
3

10
e2x − 3

10
cos(x)− 1

10
sin(x) .



There there will be an exercise class tomorrow!

See you tomorrow!
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