# Mathematics 

## Cornelia Busch

ETH Zürich
November 6， 2023

## Program

Last week

- Separation of variables.
- First order linear differential equations: variation of constants.
- Inhomogeneous linear differential equations.

Today

- Linear differential equations with constant coefficients.


## Linear ODEs of order $n$ with constant coefficients

A linear differential equation of order $n$ is

$$
x^{(n)}(t)+a_{n-1}(t) x^{(n-1)}(t)+\ldots+a_{1}(t) \dot{x}(t)+a_{0}(t) x(t)=r(t)
$$

If $a_{n-1}(t), \ldots, a_{0}(t)$ are constant (don't depend on $t$ ), then the differential equation has constant coefficients.

$$
x^{(n)}(t)+a_{n-1} x^{(n-1)}(t)+\ldots+a_{1} \dot{x}(t)+a_{0} x(t)=r(t)
$$

## Linear inhomogeneous ODE

We use the following method.

1) First determine the general solution $x_{h}$ of the corresponding homogeneous ODE.
2) Then find a particular solution $x_{p}$ of the inhomogeneous ODE.
3) The general solution of the inhomogeneous linear ODE is

$$
x=x_{h}+x_{p}
$$

## General solution of the homogeneous ODE

We guess

$$
x(t)=e^{\lambda t}, \quad \lambda \in \mathbb{R}
$$

and plug this function in the homogeneous equation

$$
x^{(n)}(t)+a_{n-1} x^{(n-1)}(t)+\ldots+a_{1} \dot{x}(t)+a_{0} x(t)=0
$$

With

$$
x^{(i)}(t)=\lambda^{i} e^{\lambda t}
$$

we get

$$
\lambda^{n} e^{\lambda t}+a_{n-1} \lambda^{n-1} e^{\lambda t}+\ldots a_{1} \lambda e^{\lambda t}+a_{0} e^{\lambda t}=0
$$

and

$$
e^{\lambda t}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}\right)=0
$$

## General solution of the homogeneous ODE

We consider the equation

$$
e^{\lambda t}\left(\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}\right)=0
$$

Since $e^{\lambda t} \neq 0$, it is equivalent to

$$
\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}=0
$$

We call

$$
Q(\lambda):=\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}
$$

the characteristic polynomial of the differential equation.

$$
x^{(n)}+a_{n-1} x^{(n-1)}+\ldots+a_{1} \dot{x}+a_{0} x=0
$$

## General solution of the homogeneous ODE

There are different cases:

1. $Q(\lambda)$ has $n$ different real zeros.
2. $Q(\lambda)$ has zeros with multiplicity $>1$.
3. $Q(\lambda)$ has complex zeros.

## General solution of the homogeneous ODE

If $Q(\lambda)=0$ has $n$ different real zeros $\lambda_{1}, \ldots, \lambda_{n}$, then the differential equation has $n$ linear independent solutions:

$$
e^{\lambda_{1} t}, \ldots, e^{\lambda_{n} t}
$$

The general solution is

$$
x(t)=\sum_{i=1}^{n} c_{i} e^{\lambda_{i} t}
$$

with $n$ constants $c_{1}, \ldots, c_{n}$.

## General solution of the homogeneous ODE

If $\lambda_{k}$ is a zero with multiplicity $p$, then

$$
e^{\lambda_{k} t}, t e^{\lambda_{k} t}, t^{2} e^{\lambda_{k} t}, \ldots, t^{p-1} e^{\lambda_{k} t}
$$

are the $p$ solutions corresponding to $\lambda_{k}$.
Their contribution to the general equation is

$$
C_{0} e^{\lambda_{k} t}+C_{1} t e^{\lambda_{k} t}+C_{2} t^{2} e^{\lambda_{k} t}+\cdots+C_{p-1} t^{p-1} e^{\lambda_{k} t}
$$

## General solution of the homogeneous ODE

By the previous scheme the pair of complex conjugate zeros

$$
\lambda=\alpha \pm i \beta
$$

would contribute with the complex solutions

$$
\begin{aligned}
& e^{(\alpha+i \beta) t}=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& e^{(\alpha-i \beta) t}=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

but we want real functions. The functions

$$
e^{\alpha t} \cos (\beta t) \text { and } e^{\alpha t} \sin (\beta t) .
$$

are the real solutions. These are linearly independent.

## General solution of the homogeneous ODE

If the multiplicity of the complex zero is $p>1$ we have the solutions

$$
\begin{array}{llll}
e^{\alpha t} \cos (\beta t), & t e^{\alpha t} \cos (\beta t), & \ldots, & t^{p-1} e^{\alpha t} \cos (\beta t), \\
e^{\alpha t} \sin (\beta t), & t e^{\alpha t} \sin (\beta t), & \ldots, & t^{p-1} e^{\alpha t} \sin (\beta t)
\end{array}
$$

## Particular solution of the inhomogeneous ODE

To find the particular solution of the inhomogeneous ODE

$$
x^{(n)}(t)+a_{n-1}(t) x^{(n-1)}(t)+\ldots+a_{1}(t) \dot{x}(t)+a_{0}(t) x(t)=r(t)
$$

we make a guess that depends on $r(t)$.
See the examples!

## Example 1

Determine all the solutions $y(x)$ of the differential equation

$$
y^{\prime \prime}-y^{\prime}-6 y=e^{-x}
$$

that are bounded on the interval $[0, \infty[$ and satisfy $y(0)=0$.

## Example 1

We first consider the homogeneous equation

$$
y^{\prime \prime}-y^{\prime}-6 y=0
$$

The zeros of the characteristic polynomial

$$
\lambda^{2}-\lambda-6=0
$$

are

$$
\lambda_{1,2}=\frac{1 \pm \sqrt{1+24}}{2}=\frac{1 \pm 5}{2}=\left\{\begin{array}{r}
3 \\
-2
\end{array}\right.
$$

The general solution of the homogeneous equation is

$$
y_{h}(x)=c_{1} e^{3 x}+c_{2} e^{-2 x} .
$$

## Example 1

The guess for the special solution of the inhomogeneous equation

$$
y^{\prime \prime}-y^{\prime}-6 y=e^{-x}
$$

is

$$
y(x)=c e^{-x}
$$

Then $y^{\prime}=-c e^{-x}, y^{\prime \prime}=c e^{-x}$ and

$$
\begin{aligned}
y^{\prime \prime}-y^{\prime}-6 y & =c e^{-x}+c e^{-x}-6 c e^{-x} \\
& =-4 c e^{-x} \stackrel{!}{=} e^{-x}
\end{aligned}
$$

The particular solution is

$$
y_{p}(x)=-\frac{1}{4} e^{-x}
$$

## Example 1

The general solution is

$$
y(x)=y_{h}(x)+y_{p}(x)=c_{1} e^{3 x}+c_{2} e^{-2 x}-\frac{1}{4} e^{-x}
$$

We study the solution on the interval $[0, \infty[$ :

$$
\begin{array}{ll}
e^{\alpha x}>0 & \text { for } \alpha \in \mathbb{R}, x \in \mathbb{R} \\
e^{0}=1 & \\
\lim _{x \rightarrow \infty} e^{\alpha x}=\infty & \text { for } \alpha \in \mathbb{R}, \alpha>0 \\
\lim _{x \rightarrow \infty} e^{\alpha x}=0 & \text { for } \alpha \in \mathbb{R}, \alpha<0
\end{array}
$$

therefore $y(x)$ is bounded if and only if $c_{1}=0$. The condition $y(0)=0$ yields the solution

$$
y(x)=\frac{1}{4} e^{-2 x}-\frac{1}{4} e^{-x}
$$

## Example 2

Determine all the solutions $y(x)$ of the differential equation

$$
y^{\prime \prime}-y^{\prime}-2 y=x^{2}
$$

that satisfy $y(0)=0$ and $y^{\prime}(0)=\frac{1}{2}$.

## Example 2

We first consider the homogeneous equation

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

The zeros of the characteristic polynomial

$$
\lambda^{2}-\lambda-2=0
$$

are

$$
\lambda_{1,2}=\frac{1 \pm \sqrt{1+8}}{2}=\frac{1 \pm 3}{2}=\left\{\begin{array}{r}
2 \\
-1
\end{array} .\right.
$$

The general solution of the homogeneous equation is

$$
y_{h}(x)=c_{1} e^{2 x}+c_{2} e^{-x}
$$

## Example 2

The guess for the special solution of the inhomogeneous equation

$$
y^{\prime \prime}-y^{\prime}-2 y=x^{2}
$$

is

$$
y(x)=A x^{2}+B x+C .
$$

Then $y^{\prime}=2 A x+B, y^{\prime \prime}=2 A$ and

$$
\begin{aligned}
y^{\prime \prime}-y^{\prime}-2 y & =2 A-(2 A x+B)-2\left(A x^{2}+B x+C\right) \\
& =-2 A x^{2}-(2 A+2 B) x+2 A-B-2 C \\
& \stackrel{!}{=} x^{2} .
\end{aligned}
$$

## Example 2

Comparing the coefficients of both sides of

$$
-2 A x^{2}-(2 A+2 B) x+2 A-B-2 C=x^{2}
$$

we get the following system of equations

$$
\begin{aligned}
-2 A & =1 \\
-2 A-2 B & =0 \\
2 A-B-2 C & =0
\end{aligned}
$$

We see that

$$
A=-\frac{1}{2}, \quad B=\frac{1}{2}, \quad C=-\frac{3}{4}
$$

The particular solution is

$$
y_{p}(x)=-\frac{1}{2} x^{2}+\frac{1}{2} x-\frac{3}{4} .
$$

## Example 2

The general solution is

$$
\begin{aligned}
y(x) & =y_{h}(x)+y_{p}(x) \\
& =c_{1} e^{2 x}+c_{2} e^{-x}-\frac{1}{2} x^{2}+\frac{1}{2} x-\frac{3}{4} .
\end{aligned}
$$

The conditions $y(0)=0$ and $y^{\prime}(0)=\frac{1}{2}$ define the constants $c_{1}$ and $c_{2}$. Since

$$
y^{\prime}(x)=2 c_{1} e^{2 x}-c_{2} e^{-x}-x+\frac{1}{2},
$$

we get

$$
\begin{gathered}
y(0)=0=c_{1}+c_{2}-\frac{3}{4} \\
y^{\prime}(0)=\frac{1}{2}=2 c_{1}-c_{2}+\frac{1}{2}
\end{gathered}
$$

## Example 2

The solutions of the system

$$
\begin{array}{r}
c_{1}+c_{2}=\frac{3}{4} \\
2 c_{1}-c_{2}=0
\end{array}
$$

are

$$
c_{1}=\frac{1}{4}, \quad c_{2}=\frac{1}{2}
$$

Hence the solution of our initial value problem is

$$
y(x)=\frac{1}{4} e^{2 x}+\frac{1}{2} e^{-x}-\frac{1}{2} x^{2}+\frac{1}{2} x-\frac{3}{4} .
$$

## Example 3

Determine all the solutions $y(x)$ of the differential equation

$$
y^{\prime \prime}-y^{\prime}-2 y=\cos (x)
$$

that satisfy $y(0)=0$ and $y^{\prime}(0)=\frac{1}{2}$.
We already know the general solution of the homogeneous equation:

$$
y_{h}(x)=c_{1} e^{2 x}+c_{2} e^{-x}
$$

## Example 3

The guess for the special solution of the inhomogeneous equation

$$
y^{\prime \prime}-y^{\prime}-2 y=\cos (x)
$$

is

$$
y(x)=A \cos (x)+B \sin (x)
$$

Then

$$
\begin{aligned}
y^{\prime} & =-A \sin (x)+B \cos (x) \\
y^{\prime \prime} & =-A \cos (x)-B \sin (x)
\end{aligned}
$$

and

$$
\begin{aligned}
y^{\prime \prime}-y^{\prime}-2 y & =-A \cos (x)-B \sin (x)-(-A \sin (x)+B \cos (x))-2(A \cos (x)+B \sin (x)) \\
& =(-3 A-B) \cos (x)+(A-3 B) \sin (x) \\
& \stackrel{!}{=} \cos (x)
\end{aligned}
$$

## Example 3

Comparing the coefficients of both sides of

$$
(-3 A-B) \cos (x)+(A-3 B) \sin (x)=\cos (x)
$$

we get the following system of equations

$$
\begin{aligned}
-3 A-B & =1 \\
A-3 B & =0
\end{aligned}
$$

We see that

$$
A=-\frac{3}{10}, \quad B=-\frac{1}{10}
$$

The particular solution is

$$
y_{p}(x)=-\frac{3}{10} \cos (x)-\frac{1}{10} \sin (x) .
$$

## Example 3

The general solution is

$$
\begin{aligned}
y(x) & =y_{h}(x)+y_{p}(x) \\
& =c_{1} e^{2 x}+c_{2} e^{-x}-\frac{3}{10} \cos (x)-\frac{1}{10} \sin (x)
\end{aligned}
$$

The conditions $y(0)=0$ and $y^{\prime}(0)=\frac{1}{2}$ define the constants $c_{1}$ and $c_{2}$. Since

$$
y^{\prime}(x)=2 c_{1} e^{2 x}-c_{2} e^{-x}+\frac{3}{10} \sin (x)-\frac{1}{10} \cos (x)
$$

we get

$$
\begin{aligned}
y(0) & =0=c_{1}+c_{2}-\frac{3}{10} \\
y^{\prime}(0) & =\frac{1}{2}=2 c_{1}-c_{2}-\frac{1}{10}
\end{aligned}
$$

## Example 3

The solutions of the system

$$
\begin{aligned}
c_{1}+c_{2} & =\frac{3}{10} \\
2 c_{1}-c_{2} & =\frac{6}{10}
\end{aligned}
$$

are

$$
c_{1}=\frac{3}{10}, \quad c_{2}=0
$$

Hence the solution of our initial value problem is

$$
y(x)=\frac{3}{10} e^{2 x}-\frac{3}{10} \cos (x)-\frac{1}{10} \sin (x)
$$

There there will be an exercise class tomorrow!

## See you tomorrow!

