Mathematics

IBS

Cornelia Busch

ETH Zürich

November 14, 2023

A system of equations

We want to solve

$$
\begin{aligned}
& 3 x_{1}+x_{2}=2 \\
& 5 x_{1}+2 x_{2}=3
\end{aligned}
$$

We first eliminate x_{1} in the second row and then x_{2} in the first row:

$$
\begin{aligned}
& \left\lvert\, \begin{aligned}
3 x_{1}+x_{2} & =2 \\
3 x_{1}+\frac{6}{5} x_{2} & =\frac{9}{5} \\
3 x_{1}+x_{2} & =2 \\
\frac{1}{5} x_{2} & =-\frac{1}{5}
\end{aligned}\right.
\end{aligned}
$$

A system of equations

$$
\begin{aligned}
\mid 3 x_{1}+x_{2} & =2 \\
x_{2} & =-1 \\
& =3 \\
3 x_{1} & =3 \\
x_{2} & =-1
\end{aligned}
$$

Solution

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=-1
\end{aligned}
$$

A linear function

In the example we consider a function

$$
\begin{aligned}
f: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto f(x)
\end{aligned}
$$

defined by

$$
\binom{x_{1}}{x_{2}} \longmapsto\binom{3 x_{1}+x_{2}}{5 x_{1}+2 x_{2}}
$$

and search for a vector $x=\binom{x_{1}}{x_{2}}$ whose image is $\binom{2}{3}$, i.e.

$$
f(x)=\binom{3 x_{1}+x_{2}}{5 x_{1}+2 x_{2}}=\binom{2}{3} .
$$

Picture

Inverse function

Let f be a function whose domain is the set A and whose codomain is the set B. Then f is invertible if there exists a function g whose domain is the set B and whose image is the set A, with the property

$$
f(x)=y \quad \Longleftrightarrow \quad g(y)=x
$$

Then

$$
g(f(x))=x \quad \text { and } \quad f(g(y))=y
$$

The inverse g is denoted f^{-1}.

A linear function

The linear function

$$
\begin{aligned}
f: & \mathbb{R}^{2} \\
x=\binom{x_{1}}{x_{2}} & \longmapsto
\end{aligned}
$$

is invertible. Its inverse is the function

$$
\begin{aligned}
g: \quad \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
x=\binom{x_{1}}{x_{2}} & \longmapsto
\end{aligned}
$$

Solution of a system of equations

The solution of the equation

$$
f(x)=\binom{3 x_{1}+x_{2}}{5 x_{1}+2 x_{2}}=\binom{2}{3}=b
$$

is

$$
g(b)=g\binom{2}{3}=\binom{1}{-1}
$$

Solution of a system of equations

The system of linear equations

$$
f(x)=b
$$

has a unique solution if and only if f is invertible. Then

$$
x=g(b)
$$

Non-invertible linear functions

The nonzero linear mapping

$$
\begin{aligned}
f: \mathbb{R}^{3} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto f(x)
\end{aligned}
$$

is never invertible since it is never injective.

Its image is \mathbb{R}^{2} or a one-dimensional subspace of \mathbb{R}^{2}, i.e., a line across $(0,0)$.

Non-invertible linear functions

The nonzero linear mapping

$$
\begin{aligned}
f: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{3} \\
x & \longmapsto f(x)
\end{aligned}
$$

is never invertible since it is never surjective.

Its image is a one- ore two-dimensional subspace of \mathbb{R}^{3}, i.e., a line or a plane across (0, 0, 0).

Solution of a system of linear equations

Let

$$
\begin{aligned}
f: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{m} \\
x & \longmapsto f(x)
\end{aligned}
$$

and $b \in \mathbb{R}^{m}$. We consider the equation

$$
f(x)=b
$$

- If f is bijective, then the equation $f(x)=b$ has a unique solution.
- If f is not injective and $b \in \operatorname{im}(f)$, then $f(x)=b$ has an infinite number of solutions.
- If f is not surjective and $b \notin \operatorname{im}(f)$, then $f(x)=b$ has no solution.

Linear dependency

A set of n vectors $\alpha_{1}, \ldots \alpha_{n} \in \mathbb{R}^{m}$ is called linearly dependent if there exist $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}$ such that

$$
\lambda_{1} \alpha_{1}+\lambda_{2} \alpha_{2}+\cdots+\lambda_{n} \alpha_{n}=0
$$

and there is $i \in\{1, \ldots n\}$ with $\lambda_{i} \neq 0$ (at least one of the λ_{i} is nonzero).
The set of vectors $\alpha_{1}, \ldots \alpha_{n} \in \mathbb{R}^{m}$ is called linearly independent if and only if

$$
\lambda_{1} \alpha_{1}+\lambda_{2} \alpha_{2}+\cdots+\lambda_{n} \alpha_{n}=0
$$

implies

$$
\lambda_{1}=\lambda_{2}=\cdots=\lambda_{n}=0
$$

Basis

The set

$$
<\alpha_{1}, \ldots, \alpha_{n}>:=\left\{\lambda_{1} \alpha_{1}+\lambda_{2} \alpha_{2}+\cdots+\lambda_{n} \alpha_{n} \mid \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{R}\right\}
$$

is called the span of $\alpha_{1}, \ldots, \alpha_{n}$. It is the set of all linear combinations of $\alpha_{1}, \ldots, \alpha_{n}$.
The dimension of $V:=<\alpha_{1}, \ldots, \alpha_{n}>$ is the maximal number m such that there are m linearly independent vectors in V.

Then the m linearly independent vectors are called a basis of V.

Span of \mathbb{R}

One vector spans a line. Two vectors on the same line are always linearly dependent.
A line is a one-dimensional space.

Span of \mathbb{R}^{2}

Two linearly independent vectors span a plane. Three vectors in the same plane are always linearly dependent.

A plane is a two-dimensional space.

Span of \mathbb{R}^{3}

Three linearly independent vectors span a 3-dimensional space. Four vectors in a 3-dimensional space are always linearly dependent.

Standard basis

The standard basis of \mathbb{R}^{2} is

$$
e_{1}=\binom{1}{0}, \quad e_{2}=\binom{0}{1}
$$

and the standard basis of \mathbb{R}^{3} is

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Standard basis

For every vector $x \in \mathbb{R}^{2}$ there are $x_{1}, x_{2} \in \mathbb{R}$ such that

$$
x=x_{1} e_{1}+x_{2} e_{2}=\binom{x_{1}}{x_{2}}
$$

and for every vector $y \in \mathbb{R}^{3}$ there are $y_{1}, y_{2}, y_{3} \in \mathbb{R}$ such that

$$
y=y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)
$$

Linear mappings

Let v_{1}, \ldots, v_{n} be a basis of \mathbb{R}^{n} and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ a linear mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Let $x=x_{1} v_{1}+\ldots+x_{n} v_{n} \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
f(x) & =f\left(x_{1} v_{1}+\ldots+x_{n} v_{n}\right) \\
& =x_{1} f\left(v_{1}\right)+\ldots+x_{n} f\left(v_{n}\right)
\end{aligned}
$$

Hence we know the image of any $x \in \mathbb{R}^{n}$ if we know

$$
f\left(v_{1}\right), \ldots, f\left(v_{n}\right)
$$

Linear mappings

We define a linear mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\begin{aligned}
& f\left(e_{1}\right)=3 e_{1}+5 e_{2} \\
& f\left(e_{2}\right)=e_{1}+2 e_{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
f\left(x_{1} e_{1}+x_{2} e_{2}\right) & =x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right) \\
& =x_{1}\left(3 e_{1}+5 e_{2}\right)+x_{2}\left(e_{1}+2 e_{2}\right) \\
& =3 x_{1} e_{1}+5 x_{1} e_{2}+x_{2} e_{1}+2 x_{2} e_{2} \\
& =\left(3 x_{1}+x_{2}\right) e_{1}+\left(5 x_{1}+2 x_{2}\right) e_{2}
\end{aligned}
$$

Hence

$$
\binom{x_{1}}{x_{2}} \longmapsto\binom{3 x_{1}+x_{2}}{5 x_{1}+2 x_{2}}
$$

Linear mappings

We introduce a matrix A such that

$$
f(x)=A x .
$$

This is the multiplication of the vector $x=\binom{x_{1}}{x_{2}}$ with a matrix $A=\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)$.

$$
A x=\left(\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{3 x_{1}+x_{2}}{5 x_{1}+2 x_{2}}
$$

