Mathematics

IBS

Cornelia Busch

ETH Zürich

November 13, 2023

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Linear equations

Given $a, b \in \mathbb{R}$. When does the linear equation in x

$$a \cdot x = b$$

have a solution? Is there more than one solution?

Let *a* and *b* be rational, real or complex numbers. If it is possible to divide by *a*, i.e. $a \neq 0$ or *a* is invertible, then the equation has a unique solution

$$x=a^{-1}\cdot b=\frac{b}{a}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Linear equations

If a = 0 and b = 0 we have the equation

$$0 \cdot x = 0$$

and this is true for any value of x. Therefore the equation $0 \cdot x = 0$ has infinitely many solutions.

If a = 0 and $b \neq 0$, then the equation

$$0 \cdot x = b \neq 0$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

has no solutions.

Injective, surjective, bijective

A function $f : A \to B$ is said to be injective (or one-to-one) if for all $x_1, x_2 \in A$, whenever $f(x_1) = f(x_2)$, then $x_1 = x_2$. In symbols

$$\forall x_1, x_2 \in A, \quad f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Injective, surjective, bijective

A function $f : A \to B$ is said to be surjective (or onto) if for every $y \in B$, there exists an $x \in A$, such that f(x) = y. In symbols

Injective, surjective, bijective

A function $f : A \rightarrow B$ is said to be bijective if it is injective and surjective.

Linear functions

Let

$$: \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto f(x)$$

f

be a function mapping the real numbers on real numbers. The function *f* is called linear if and only if for all $x, y \in \mathbb{R}$ and $\lambda \in \mathbb{R}$

$$f(\lambda x + y) = \lambda f(x) + f(y)$$
.

Linear functions

Let $a \in \mathbb{R}$ be a constant. Then the function given by

$$f(x) = ax, \qquad x \in \mathbb{R}$$

is a linear function.

The function

$$g(x) = ax + b, \qquad x \in \mathbb{R}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

is not linear. Here $a, b \in \mathbb{R}$ are constants.

Linear functions

Let

be a function mapping a vector with *n* components on vectors with *m* components (coordinates)

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \longmapsto \begin{pmatrix} f_1(x_1, \ldots, x_n) \\ \vdots \\ f_m(x_1, \ldots, x_n) \end{pmatrix} = f(x),$$

where

$$egin{array}{rcl} f_{i}:&\mathbb{R}^{n}&\longrightarrow&\mathbb{R}\ &&&&&f_{i}(x)\,, \end{array}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

 $i = 1, \ldots, n$, is a function in *n* variables.

The sets \mathbb{R}^n and \mathbb{R}^m are vector spaces.

The natural number *n* is the dimension of the vector space \mathbb{R}^n .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Example of a linear function

We consider the function

$$egin{array}{ccccc} f: & \mathbb{R}^2 & \longrightarrow & \mathbb{R}^2 \ & x & \longmapsto & f(x) \end{array}$$

defined by

$$egin{pmatrix} x_1\ x_2 \end{pmatrix}\longmapsto egin{pmatrix} 2x_1-x_2\ x_1+2x_2 \end{pmatrix}$$

In particular

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \longmapsto \begin{pmatrix} 2 \\ 1 \end{pmatrix} = f(e_1)$$
 and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \longmapsto \begin{pmatrix} -1 \\ 2 \end{pmatrix} = f(e_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

A picture

$$e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \longmapsto \begin{pmatrix} 2 \\ 1 \end{pmatrix} = f(e_1)$$
 and $e_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \longmapsto \begin{pmatrix} -1 \\ 2 \end{pmatrix} = f(e_2)$

We represent the vectors e_1 , e_2 and their images in different pictures.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

This week there will be an exercise class on Friday! Have a nice week!

(ロ) (型) (主) (主) (三) のへで