Mathematics

IBS

Cornelia Busch

ETH Zürich

November 13, 2023

Linear equations

Given $a, b \in \mathbb{R}$. When does the linear equation in x

$$
a \cdot x=b
$$

have a solution? Is there more than one solution?
Let a and b be rational, real or complex numbers. If it is possible to divide by a, i.e. $a \neq 0$ or a is invertible, then the equation has a unique solution

$$
x=a^{-1} \cdot b=\frac{b}{a}
$$

Linear equations

If $a=0$ and $b=0$ we have the equation

$$
0 \cdot x=0
$$

and this is true for any value of x. Therefore the equation $0 \cdot x=0$ has infinitely many solutions.

If $a=0$ and $b \neq 0$, then the equation

$$
0 \cdot x=b \neq 0
$$

has no solutions.

Injective, surjective, bijective

A function $f: A \rightarrow B$ is said to be injective (or one-to-one) if for all $x_{1}, x_{2} \in A$, whenever $f\left(x_{1}\right)=f\left(x_{2}\right)$, then $x_{1}=x_{2}$. In symbols

$$
\forall x_{1}, x_{2} \in A, \quad f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}
$$

Injective, surjective, bijective

A function $f: A \rightarrow B$ is said to be surjective (or onto) if for every $y \in B$, there exists an $x \in A$, such that $f(x)=y$. In symbols

$$
\forall y \in B, \exists x \in A, \quad f(x)=y
$$

Injective, surjective, bijective

A function $f: A \rightarrow B$ is said to be bijective if it is injective and surjective.

Linear functions

Let

$$
\begin{array}{rlll}
f: & \mathbb{R} & \longrightarrow \mathbb{R} \\
& x & \longmapsto f(x)
\end{array}
$$

be a function mapping the real numbers on real numbers. The function f is called linear if and only if for all $x, y \in \mathbb{R}$ and $\lambda \in \mathbb{R}$

$$
f(\lambda x+y)=\lambda f(x)+f(y)
$$

Linear functions

Let $a \in \mathbb{R}$ be a constant. Then the function given by

$$
f(x)=a x, \quad x \in \mathbb{R}
$$

is a linear function.
The function

$$
g(x)=a x+b, \quad x \in \mathbb{R}
$$

is not linear.
Here $a, b \in \mathbb{R}$ are constants.

Linear functions

Let

$$
\begin{aligned}
f: \quad \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{m} \\
x & \longmapsto f(x)
\end{aligned}
$$

be a function mapping a vector with n components on vectors with m components (coordinates)

$$
x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \longmapsto\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\vdots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right)=f(x)
$$

where

$$
\begin{aligned}
f_{i}: \mathbb{R}^{n} & \longrightarrow \mathbb{R} \\
x & \longmapsto f_{i}(x),
\end{aligned}
$$

$i=1, \ldots, n$, is a function in n variables.

Vector space

The sets \mathbb{R}^{n} and \mathbb{R}^{m} are vector spaces.
The natural number n is the dimension of the vector space \mathbb{R}^{n}.

Example of a linear function

We consider the function

$$
\begin{aligned}
f: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto f(x)
\end{aligned}
$$

defined by

$$
\binom{x_{1}}{x_{2}} \longmapsto\binom{2 x_{1}-x_{2}}{x_{1}+2 x_{2}}
$$

In particular

$$
e_{1}=\binom{1}{0} \longmapsto\binom{2}{1}=f\left(e_{1}\right) \quad \text { and } \quad e_{2}=\binom{0}{1} \longmapsto\binom{1}{2}=f\left(e_{2}\right)
$$

A picture

$$
e_{1}=\binom{1}{0} \longmapsto\binom{2}{1}=f\left(e_{1}\right) \quad \text { and } \quad e_{2}=\binom{0}{1} \longmapsto\binom{-1}{2}=f\left(e_{2}\right)
$$

We represent the vectors e_{1}, e_{2} and their images in different pictures.

This week there will be an exercise class on Friday! Have a nice week!

