# Mathematics 

## IBS

## Cornelia Busch

ETH Zürich

November 20, 2023

## A system of equations

We solve

$$
\left\lvert\, \begin{array}{r}
3 x_{1}+x_{2}=2 \\
5 x_{1}+2 x_{2}=3
\end{array}\right.
$$

and get

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=-1
\end{aligned}
$$

## Standard basis

The standard basis of $\mathbb{R}^{2}$ is

$$
e_{1}=\binom{1}{0}, \quad e_{2}=\binom{0}{1}
$$

and the standard basis of $\mathbb{R}^{3}$ is

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

## Standard basis

For every vector $x \in \mathbb{R}^{2}$ there are $x_{1}, x_{2} \in \mathbb{R}$ such that

$$
x=x_{1} e_{1}+x_{2} e_{2}=\binom{x_{1}}{x_{2}}
$$

and for every vector $y \in \mathbb{R}^{3}$ there are $y_{1}, y_{2}, y_{3} \in \mathbb{R}$ such that

$$
y=y_{1} e_{1}+y_{2} e_{2}+y_{3} e_{3}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)
$$

## Linear mappings

Let $v_{1}, \ldots, v_{n}$ be a basis of $\mathbb{R}^{n}$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ a linear mapping $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Let $x=x_{1} v_{1}+\ldots+x_{n} v_{n} \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
f(x) & =f\left(x_{1} v_{1}+\ldots+x_{n} v_{n}\right) \\
& =x_{1} f\left(v_{1}\right)+\ldots+x_{n} f\left(v_{n}\right)
\end{aligned}
$$

Hence we know the image of any $x \in \mathbb{R}^{n}$ if we know

$$
f\left(v_{1}\right), \ldots, f\left(v_{n}\right)
$$

## Linear mappings

We define a linear mapping $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by

$$
\begin{aligned}
& f\left(e_{1}\right)=3 e_{1}+5 e_{2} \\
& f\left(e_{2}\right)=e_{1}+2 e_{2}
\end{aligned}
$$

Then

$$
\begin{aligned}
f\left(x_{1} e_{1}+x_{2} e_{2}\right) & =x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right) \\
& =x_{1}\left(3 e_{1}+5 e_{2}\right)+x_{2}\left(e_{1}+2 e_{2}\right) \\
& =3 x_{1} e_{1}+5 x_{1} e_{2}+x_{2} e_{1}+2 x_{2} e_{2} \\
& =\left(3 x_{1}+x_{2}\right) e_{1}+\left(5 x_{1}+2 x_{2}\right) e_{2}
\end{aligned}
$$

Hence

$$
\binom{x_{1}}{x_{2}} \longmapsto\binom{3 x_{1}+x_{2}}{5 x_{1}+2 x_{2}}
$$

## Linear mappings

We introduce a matrix $A$ such that

$$
f(x)=A x .
$$

This is the multiplication of the vector $x=\binom{x_{1}}{x_{2}}$ with a matrix $A=\left(\begin{array}{ll}3 & 1 \\ 5 & 2\end{array}\right)$.

$$
A x=\left(\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{3 x_{1}+x_{2}}{5 x_{1}+2 x_{2}}
$$

## Matrix multiplication

The multiplication of a matrix with a vector is done as follows.

$$
\left(\begin{array}{ll}
3 & 1 \\
5 & 2
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{3 x_{1}+x_{2}}{5 x_{1}+2 x_{2}}
$$

In general

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

and

$$
A x=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{a_{11} x_{1}+a_{12} x_{2}}{a_{21} x_{1}+a_{22} x_{2}}
$$

## Matrix multiplication

Then

$$
\begin{aligned}
& A e_{1}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{1}{0}=\binom{a_{11}}{a_{21}} \\
& A e_{2}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\binom{0}{1}=\binom{a_{12}}{a_{22}}
\end{aligned}
$$

Hence

- the first column of $A$ contains the image of the first basis vector $e_{1}$ and
- the second column of $A$ contains the image of second basis vector $e_{2}$.


## Mappings and matrices

We now consider

$$
\begin{aligned}
f: \mathbb{R}^{n} & \longrightarrow \mathbb{R}^{n} \\
x & \longmapsto A x=y
\end{aligned}
$$

i.e. $A$ is an $n \times n$-matrix.

Since the images of the basis-vectors of $\mathbb{R}^{n}$ are the columns of the matrix $A$, these columns span the image $\operatorname{im}(f)$ of $f$.

## Linear equations

- If the rows of the matrix $A$ are linearly independent, then

$$
\operatorname{im}(f)=\mathbb{R}^{n}
$$

In this case the mapping $f$ has an inverse.

- If rows of the matrix $A$ are linearly dependent, then

$$
\operatorname{im}(f) \subsetneq \mathbb{R}^{n}
$$

and the dimension of $\operatorname{im}(f)$ is smaller than $n$. In this case the mapping $f$ has no inverse and there exist vectors $0 \neq c \in \mathbb{R}^{n}$ that satisfy

$$
c \notin \operatorname{im}(f) .
$$

## Linear equations

In any matrix $A$ the number of linearly independent rows equals the number of linearly independent columns.

This is called the rank of the matrix. It is the dimension of $\operatorname{im}(f)$

## Linear equations

We are back to our system of $n$ equations in $n$ variables.

$$
f(x)=A x=b
$$

with $x \in \mathbb{R}^{n}$ and $b \in \mathbb{R}^{n}$.

- If the rows of $A$ are linearly independent, then the mapping $f$ has an inverse and the equation has a unique solution $x$.
- If the rows of $A$ are linearly dependent the mapping has no inverse and we have to consider $b$.


## Linear equations

$$
f(x)=A x=b
$$

We assume that $f$ is not invertible.

- If $b \in \operatorname{im}(f)$, the system has an infinite number of solutions.
- If $b \notin \operatorname{im}(f)$, the system has no solution.


## Linear equations

For the simplicity of the notation we choose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$. Given an equation $A x=b$ with

$$
A x=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=b
$$

To see wether $b$ is in the image of $f$, we first write an extended matrix

$$
\left|\begin{array}{lll|l}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right|
$$

## Linear equations

If the rank, i.e. the number of linearly independent lines, in

$$
\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|
$$

equals the rank of

$$
\left|\begin{array}{lll|l}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right|
$$

then $b \in \operatorname{im}(f)$ and the system has an infinite number of solutions.
If this is not the case, then $b \notin \operatorname{im}(f)$ and the system has no solution.

## Linear equations

We first consider the case of an invertible $f$. We then have a unique solution.

$$
\left(\begin{array}{lll}
1 & 0 & -1 \\
2 & 1 & -1 \\
1 & 1 & -1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
5 \\
2
\end{array}\right)
$$

## Linear equations

We determine the rank of

$$
\left|\begin{array}{lll|l}
1 & 0 & -1 & 2 \\
2 & 1 & -1 & 5 \\
1 & 1 & -1 & 2
\end{array}\right|
$$

We first add multiples of the first row to the second and the third row.

$$
\left|\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0
\end{array}\right|
$$

is equivalent to

$$
\left|\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right|
$$

## Linear equations

$$
\left|\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right|
$$

We see that the rank of the first 3 columns in this system equals 3 . Hence the system has a unique solution.

Indeed the solution of

$$
\begin{aligned}
x_{1}-x_{3} & =2 \\
x_{2} & =0 \\
x_{3} & =1
\end{aligned}
$$

is

$$
x=\left(\begin{array}{l}
3 \\
0 \\
1
\end{array}\right)
$$

## Linear equations

How many solutions has the following equation?

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
2 & 1 & -1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
5 \\
3
\end{array}\right)
$$

## Linear equations

We determine the rank of

$$
\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
2 & 1 & -1 & 5 \\
1 & 1 & 0 & 3
\end{array}
$$

We first add multiples of the first row to the second and the third row.

$$
\left|\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right|
$$

is equivalent to

$$
\left|\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right|
$$

## Linear equations

$$
\left|\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right|
$$

We see that the rank of $A$ equals the rank of this system. Hence the system has an infinite number of solutions.
Indeed the set of solutions of

$$
\begin{aligned}
x_{1} & -x_{3}
\end{aligned}=2
$$

is

$$
\left\{\left.x=\left(\begin{array}{c}
2+\lambda \\
1-\lambda \\
\lambda
\end{array}\right) \right\rvert\, \lambda \in \mathbb{R}\right\}
$$

## Linear equations

How many solutions has the following equation?

$$
\left(\begin{array}{rrr}
1 & 0 & -1 \\
2 & 1 & -1 \\
1 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
5 \\
2
\end{array}\right)
$$

## Linear equations

We determine the rank of
$\left|\begin{array}{rrr|r}1 & 0 & -1 & 2 \\ 2 & 1 & -1 & 5 \\ 1 & 1 & 0 & 2\end{array}\right|$

We first add multiples of the first row to the second and the third row.

$$
\left|\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right|
$$

is equivalent to

$$
\left|\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right|
$$

## Linear equations

$$
\left|\begin{array}{rrr|r}
1 & 0 & -1 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & -1
\end{array}\right|
$$

We see that the rank of $A$ is 2 . Hence it is smaller than the rank 3 of this system. Hence the system has no solution.
Indeed the system

$$
\begin{aligned}
& x_{1} \quad-x_{3}=2 \\
& x_{2}+x_{3}=1 \\
& 0=-1
\end{aligned}
$$

contains a contradiction.

This week there will be an exercise class tomorrow!
Have a nice week!

