Mathematics

IBS

Cornelia Busch

ETH Zürich

November 28, 2023

Basis

A maximal set of linearly independent vectors $\tau_{1}, \ldots, \tau_{n}$ in a vector space is called a basis.

The standard-basis of \mathbb{R}^{n} is

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\vdots \\
\vdots \\
0
\end{array}\right), e_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots, e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right) .
$$

Basis

The standard basis of \mathbb{R}^{2} is

$$
e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1} .
$$

The vectors

$$
\tau_{1}=\binom{2}{1} \quad \text { and } \quad \tau_{2}=\binom{1}{2}
$$

are linearly independent since they are not parallel. They form a basis of \mathbb{R}^{2}.

Basis

For

$$
\tau_{1}=\binom{2}{1} \quad \text { and } \quad \tau_{2}=\binom{1}{2}
$$

we check that

$$
\begin{aligned}
& e_{1}=\frac{2}{3} \tau_{1}-\frac{1}{3} \tau_{2} \\
& e_{2}=-\frac{1}{3} \tau_{1}+\frac{2}{3} \tau_{2}
\end{aligned}
$$

and this shows that τ_{1}, τ_{2} form a basis since e_{1} and e_{2} form a basis.

Basis

The vectors τ_{1} and τ_{2} are represented in the basis $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}$:

$$
\tau_{1}=\binom{2}{1}=2 e_{1}+e_{2} \quad \text { and } \quad \tau_{2}=\binom{1}{2}=e_{1}+2 e_{2}
$$

In the basis τ_{1}, τ_{2} they are written

$$
\tau_{1}=\binom{1}{0}, \tau_{2}=\binom{0}{1} .
$$

Basis

The previous slide shows that the coordinates of a vector $x \in \mathbb{R}^{n}$ depend on the basis of \mathbb{R}^{n}.

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}
$$

Change of basis

We define the mapping

$$
\begin{aligned}
f: \mathbb{R}^{2} & \longrightarrow \mathbb{R}^{2} \\
x & \longmapsto f(x)
\end{aligned}
$$

by

$$
f\left(e_{1}\right):=2 e_{1}+7 e_{2}, \quad f\left(e_{2}\right):=e_{1}+4 e_{2}
$$

This defines the mapping because f is linear, i.e., $f\left(x_{1} e_{1}+x_{2} e_{2}\right)=x_{1} f\left(e_{1}\right)+x_{2} f\left(e_{2}\right)$.

Change of basis

In the basis e_{1}, e_{2} we can write f as $x \longmapsto f(x):=A x$ with

$$
A=\left(\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right)
$$

since

$$
\begin{aligned}
& e_{1}:=\binom{1}{0} \longmapsto\binom{2}{7}=2 e_{1}+7 e_{2} \\
& e_{2}:=\binom{0}{1} \longmapsto\binom{1}{4}=e_{1}+4 e_{2}
\end{aligned}
$$

Change of basis

We now want to express the mapping f in the basis $\tau_{1}:=2 e_{1}+e_{2}$ and $\tau_{2}:=e_{1}+2 e_{2}$. Using their representation in the standard basis, we determine the image of τ_{1} and τ_{2}.

$$
\begin{aligned}
& f\left(\tau_{1}\right)=A \tau_{1}=\left(\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right)\binom{2}{1}=\binom{5}{18}=5 e_{1}+18 e_{2} \\
& f\left(\tau_{2}\right)=A \tau_{2}=\left(\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right)\binom{1}{2}=\binom{4}{15}=4 e_{1}+15 e_{2}
\end{aligned}
$$

Change of basis

The rows in the matrix B that describes f in the basis τ_{1}, τ_{2}, are the images $f\left(\tau_{1}\right), f\left(\tau_{2}\right)$ of these vectors written in the basis τ_{1}, τ_{2}.

Hence we determine $b_{11}, b_{21}, b_{12}, b_{22} \in \mathbb{R}$ such that

$$
\begin{aligned}
& f\left(\tau_{1}\right)=b_{11} \tau_{1}+b_{21} \tau_{2} \\
& f\left(\tau_{2}\right)=b_{12} \tau_{1}+b_{22} \tau_{2}
\end{aligned}
$$

Then

$$
B=\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)
$$

Change of basis

We therefore solve

$$
\begin{aligned}
& f\left(\tau_{1}\right)=b_{11} \tau_{1}+b_{21} \tau_{2} \\
& f\left(\tau_{2}\right)=b_{12} \tau_{1}+b_{22} \tau_{2}
\end{aligned}
$$

that is the system

$$
\begin{aligned}
& \binom{5}{18}=b_{11}\binom{2}{1}+b_{21}\binom{1}{2} \\
& \binom{4}{15}=b_{12}\binom{2}{1}+b_{22}\binom{1}{2}
\end{aligned}
$$

Change of basis

We get

$$
\begin{aligned}
& f\left(\tau_{1}\right)=-\frac{8}{3} \tau_{1}+\frac{31}{3} \tau_{2} \\
& f\left(\tau_{2}\right)=-\frac{7}{3} \tau_{1}+\frac{26}{3} \tau_{2}
\end{aligned}
$$

Hence the matrix B is

$$
B=\left(\begin{array}{rr}
-\frac{8}{3} & -\frac{7}{3} \\
\frac{31}{3} & \frac{26}{3}
\end{array}\right)
$$

Change of basis

There is a fast way to find B when we have A and the new basis.
We define the transformation matrix T that maps the old basis to the new basis τ_{1}, τ_{2}. This matrix T is written in the old basis.
Let

$$
\tau_{1}=\binom{t_{11}}{t_{21}}, \quad \tau_{2}=\binom{t_{12}}{t_{22}}
$$

Then

$$
T=\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right)
$$

Change of basis

The matrix B that describes the mapping f in the basis $\tau_{1}, \ldots, \tau_{n}$ is given by

$$
B=T^{-1} A T
$$

and herewith

$$
T B T^{-1}=A .
$$

Here we use that in general the product of $n \times n$-matrices is not commutative, i.e., $M N \neq N M$.

Change of basis

In the example the matrix T is

$$
T=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

and its inverse is

$$
T^{-1}=\frac{1}{3}\left(\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right)
$$

Change of basis

Hence

$$
A T=\left(\begin{array}{ll}
2 & 1 \\
7 & 4
\end{array}\right)\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)=\left(\begin{array}{cc}
5 & 4 \\
18 & 15
\end{array}\right)
$$

and

$$
T B=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
-\frac{8}{3} & -\frac{7}{3} \\
\frac{31}{3} & \frac{26}{3}
\end{array}\right)=\left(\begin{array}{cc}
5 & 4 \\
18 & 15
\end{array}\right)
$$

You might check that $B=T^{-1} A T$.

Change of basis: An example

In the standard basis e_{1}, e_{2}, e_{3} the mapping

$$
f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}
$$

is given by

$$
x \longmapsto f(x):=A x
$$

with

$$
A:=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 2 & 0 \\
2 & 2 & 4
\end{array}\right), \quad x:=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

We want to write f in a new basis.

Change of basis: An example

We choose a new basis

$$
\tau_{1}:=e_{1}-e_{2}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right), \tau_{2}:=e_{2}-e_{3}=\left(\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right), \tau_{3}:=e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Then the transformation from the standard basis to the basis $\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$ is given by the matrix

$$
T:=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) .
$$

We have $\operatorname{det} T=1$.

Change of basis: An example

In the basis $\left\{\tau_{1}, \tau_{2}, \tau_{3}\right\}$ the mapping f is given by

$$
x:=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto T^{-1} A T x .
$$

Here

$$
A=\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 2 & 0 \\
2 & 2 & 4
\end{array}\right), \quad T=\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right), \quad T^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)
$$

Change of basis: An example

Then

$$
\begin{aligned}
T^{-1} \boldsymbol{A} \boldsymbol{T} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
1 & 2 & 0 \\
2 & 2 & 4
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 2 & 0 \\
0 & -2 & 4
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right) .
\end{aligned}
$$

This week there will be an exercise class on Friday!

See you tomorrow!

