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Linear algebra and geometry

How can we see what a given mapping

f : Rn −→ Rn

x 7−→ f (x) := Ax

does?
It may be a projection, a rotation, a reflection, a scaling, . . . .



Linear algebra and geometry

An interesting case is the one where a subspace is mapped onto itself.

The rotation about the blue axis keeps any point of the axis fixed and maps any point in
the blue plane to a point in the blue plane. Hence the plane and the axis are subspaces of
R3 that are mapped onto themselves by the rotation.



Scalings
By a scaling a sphere . . .



Scalings

. . . may become an ellipsoid.



Directions and scalars

For the simplicity of notation we choose n = 3.

We know that the columns of the matrix A that defines the mapping

f : R3 −→ R3

x 7−→ f (x) := Ax

are the images f (e1), f (e2), f (e3) of the elements of the basis e1,e2,e3 written in this
basis.

Hence the matrix A depends on the choice of the basis.



Directions and scalars

Let
f : R3 −→ R3

x 7−→ f (x)

be linear and let v1, v2, v3 ∈ R3 be linearly independent and such that λ1, λ2, λ3 ∈ R exist
with

v1 7−→ f (v1) = λ1v1

v2 7−→ f (v2) = λ2v2

v3 7−→ f (v3) = λ3v3



Directions and scalars
Then

f (v1) = λ1 · v1 + 0 · v2 + 0 · v3

f (v2) = 0 · v1 + λ2 · v2 + 0 · v3

f (v3) = 0 · v1 + 0 · v2 + λ3 · v3

hence in the basis v1, v2, v3

v1 =

1
0
0

 7−→

λ1
0
0

 = f (v1)

v2 =

0
1
0

 7−→

 0
λ2
0

 = f (v2)

v3 =

0
0
1

 7−→

 0
0
λ3

 = f (v3)



Directions and scalars

If such vectors v1, v2, v3 exist, they satisfy

f (v1) = λ1v1

f (v2) = λ2v2

f (v3) = λ3v3

Hence

Av1 = λ1v1

Av2 = λ2v2

Av3 = λ3v3



Directions and scalars

The matrix B that defines the mapping

f : R3 −→ R3

x 7−→ f (x) := Bx

in the basis v1, v2, v3 is

B =

λ1 0 0
0 λ2 0
0 0 λ3


This is a diagonal matrix.



Directions and scalars

For a given mapping that is defined by

f : R3 −→ R3

x 7−→ f (x) := Ax

in the standard basis e1,e2,e3, we want to find a new basis v1, v2, v3 such that in this new
basis the mapping f is given by f (x) = Bx with

B =

λ1 0 0
0 λ2 0
0 0 λ3


for some λ1, λ2, λ3 ∈ R.



Eigenvalues and eigenvectors

The coefficients
λ1, λ2, λ3 ∈ R

are called the eigenvalues of A.

The vectors
v1, v2, v3 ∈ R3

are called the eigenvectors of A.



Eigenvalues and eigenvectors

We now determine the eigenvalues and eigenvectors of f or equivalently of A.
We solve

Av = λv

that is equivalent to
Av − λv = (A − λ1)v = 0

There exist nonzero solutions v of (A − λ1)v = 0 if and only if (A − λ1) is not invertible,
i.e., if and only if

det(A − λ1) = 0 .



Eigenvalues and eigenvectors

Hence we find scalars λ such that

pA(λ) = det(A − λ1) = 0 .

The determinant is a polynomial of degree 3 (resp. n) in λ. It is called the characteristic
polynomial of A.

For each solution λ we determine v ̸= 0 that satisfies

(A − λ1)v = 0 .

The solution v is not unique. It belongs to a subspace of R3 (resp. Rn).



Eigenvalues and eigenvectors

Let λ1 , λ2 , λ3 ∈ R be the zeros1 of the characteristic polynomial

pA(λ) = det(A − λ1) .

If the zeros of pA(λ) are pairwise different, then we can find a basis in which the matrix
corresponding to f is diagonal.
This is not always true if the zeros are not pairwise different. As an example we consider

pA(λ) = (λ− λ1)
2 · (λ− λ2)

with λ1 ̸= λ2. Then a diagonal matrix exists if and only if we can find two linearly
independent eigenvectors to the eigenvalue λ1. There are some cases where all the
eigenvectors to the eigenvalue λ1 are linearly dependent.

1We do not consider the case of complex eigenvalues.



Eigenvalues and eigenvectors

We consider Rn with the standard basis e1 , . . . , en. Let

f : Rn −→ Rn

x 7−→ f (x) := Ax

be a linear mapping. Then the columns in A are the images f (e1) , . . . , f (en) of the
standard basis.
In the basis of eigenvectors v1 , . . . , vn the mapping f is given by

x 7−→ f (x) = Bx

The change of basis allows us to transform A in order to get the diagonal matrix B.



Change to the basis of eigenvectors

The transformation matrix T for the change of basis to the basis of eigenvectors contains
the eigenvectors of A in the columns.

T =
(
v1 v2 . . . vn

)



Computation of eigenvalues and eigenvectors

We compute the eigenvalues and eigenvectors of the matrix

A =

(
1 1
1 3

)



Computation of eigenvalues and eigenvectors

Step I: Determine the characteristic polynomial.

The characteristic polynomial pA(λ) is

pA(λ) = det(A − λ1)

= det

(
1 − λ 1

1 3 − λ

)
= (1 − λ)(3 − λ)− 1

= λ2 − 4λ+ 2



Computation of eigenvalues and eigenvectors

Step II: Compute the eigenvalues.

The zeros of the characteristic polynomial pA(λ) = λ2 − 4λ+ 2 are

λ1,2 =
4 ±

√
16 − 8
2

= 2 ±
√

2

λ1 = 2 +
√

2 , λ2 = 2 −
√

2 .



Computation of eigenvalues and eigenvectors

Step III: Compute the eigenvectors.

We first determine the eigenvector v1 to the eigenvalue λ1 = 2 +
√

2. We solve
Av1 = λ1v1 that is equivalent to (A − λ1 1)v1 = 0. We compute

A − λ1 1 =

(
1 1
1 3

)
−
(

2 +
√

2 0
0 2 +

√
2

)

=

(
−1 −

√
2 1

1 1 −
√

2

)



Computation of eigenvalues and eigenvectors
For v1 =

(
x
y

)
,

(A − λ1 1)v1 =

(
−1 −

√
2 1

1 1 −
√

2

)(
x
y

)
=

(
(−1 −

√
2)x + y

x + (1 −
√

2)y

)
!
=

(
0
0

)
hence

(−1 −
√

2)x + y = 0

x + (1 −
√

2)y = 0

and, since (−1 −
√

2)(1 −
√

2) = 1, this system is equivalent to

y = (1 +
√

2)x

and we choose

v1 =

(
1

1 +
√

2

)
.



Computation of eigenvalues and eigenvectors

We now determine the eigenvector v2 to the eigenvalue λ2 = 2 −
√

2. We solve
(A − λ2 1)v2 = 0. We compute

A − λ2 1 =

(
1 1
1 3

)
−
(

2 −
√

2 0
0 2 −

√
2

)

=

(
−1 +

√
2 1

1 1 +
√

2

)



Computation of eigenvalues and eigenvectors

For v2 =

(
x
y

)
,

(A − λ2 1)v2 =

(
−1 +

√
2 1

1 1 +
√

2

)(
x
y

)
=

(
(−1 +

√
2)x + y

x + (1 +
√

2)y

)
!
=

(
0
0

)
and, since (−1 +

√
2)(1 +

√
2) = 1, this system is equivalent to

y = (1 −
√

2)x

and we choose

v2 =

(
1 +

√
2

−1

)



Computation of eigenvalues and eigenvectors

Let
f : R2 −→ R2

x 7−→ Ax

be the mapping that is defined by A in the standard basis. Then, in the basis of
eigenvectors v1, v2, the mapping f is given by

B =

(
λ1 0
0 λ2

)
=

(
2 +

√
2 0

0 2 −
√

2

)
.



Computation of eigenvalues and eigenvectors

The transformation matrix is

T =

(
1 1 +

√
2

1 +
√

2 −1

)
and its inverse is

T−1 =
1

−4 − 2
√

2

(
−1 −1 −

√
2

−1 −
√

2 1

)
.

It is now easy to check that
B = T−1AT .



An example in R3

Consider the matrix

A :=

−1 0 0
0 0 3
0 3 0

 .

▶ Determine the eigenvalues of A. Compute the corresponding eigenvectors.
▶ Let f : R3 → R3 be the linear mapping that is defined in the standard basis of R3 by

f (x) = Ax . Determine the matrix B that represents f in the basis of eigenvectors.



An example in R3

The characteristic polynomial is

det(A − λ1) = det

−1 − λ 0 0
0 −λ 3
0 3 −λ


= (−1 − λ) · det

(
−λ 3

3 −λ

)
= (−1 − λ) · (λ2 − 9) = (1 + λ) · (9 − λ2)

= (1 + λ)(3 − λ)(3 + λ)

The eigenvalues are
λ1 = −1 , λ2 = 3 , λ3 = −3 .



An example in R3

An eigenvector v−1 to the eigenvalue λ1 = −1 is a solution of

(A − (−1) · 1) · v−1 = 0

We have

A + 1 =

−1 0 0
0 0 3
0 3 0

+

1 0 0
0 1 0
0 0 1

 =

0 0 0
0 1 3
0 3 1


and

(A + 1)v−1 =

0 0 0
0 1 3
0 3 1

x
y
z

 = 0 ⇒ v−1 =

1
0
0





An example in R3

An eigenvector v3 to the eigenvalue λ2 = 3 is a solution of

(A − 3 · 1) · v3 = 0

We have

A − 3 · 1 =

−1 0 0
0 0 3
0 3 0

−

3 0 0
0 3 0
0 0 3

 =

−4 0 0
0 −3 3
0 3 −3


and

(A − 3 · 1)v3 =

−4 0 0
0 −3 3
0 3 −3

x
y
z

 = 0 ⇒ v3 =

0
1
1





An example in R3

An eigenvector v−3 to the eigenvalue λ3 = −3 is a solution of

(A + 3 · 1) · v−3 = 0

We have

A + 3 · 1 =

−1 0 0
0 0 3
0 3 0

+

3 0 0
0 3 0
0 0 3

 =

2 0 0
0 3 3
0 3 3


and

(A + 3 · 1)v3 =

2 0 0
0 3 3
0 3 3

x
y
z

 = 0 ⇒ v3 =

 0
1
−1





An example in R3

The corresponding eigenvectors are

v−1 =

1
0
0

 , v3 =

0
1
1

 , v−3 =

 0
1
−1

 ,

The transformation matrix T is

T =

1 0 0
0 1 1
0 1 −1





An example in R3

The function f is given in the basis {v−1, v3, v−3} by

B =

−1 0 0
0 3 0
0 0 −3

 .



Another example in R3

We compute the eigenvalues and the eigenvectors of the matrix

A :=


−1
3

2
3

2
3

2
3

−1
3

2
3

2
3

2
3

−1
3

 .



Another example in R3

The characteristic polynomial of A is

det(A − λ1) = det


−1

3 − λ 2
3

2
3

2
3 −1

3 − λ 2
3

2
3

2
3 −1

3 − λ


= −

(1
3
+ λ

)3
+ 2 ·

(2
3

)3
+ 3 ·

(2
3

)2
·
(1

3
+ λ

)
= −

( 1
33 +

1
3
λ+ λ2 + λ3

)
+

24

33 +
22

32 +
22

3
λ

= −λ3 − λ2 + λ+ 1



Another example in R3

The eigenvalues satisfy
−λ3 − λ2 + λ+ 1 = 0

We see that λ1 = 1 and division of polynomials shows that

−λ3 − λ2 + λ+ 1 = (1 − λ)(λ2 + 2λ+ 1)

Now we solve λ2 + 2λ+ 1 = 0 and get

−λ3 − λ2 + λ+ 1 = (1 − λ)(1 + λ)2

Hence the eigenvalues are
λ1 = 1 , λ2 = λ3 = −1



Another example in R3

Since A doesn’t have three different eigenvalues, we do not know if the matrix A is
diagonalisable.
▶ If we find two linearly independent eigenvectors to the eigenvalue −1, then A is

diagonalisable.
▶ If all the eigenvectors to −1 are linearly dependent, then A is not diagonalisable.



Another example in R3

We first determine an eigenvector to the eigenvalue λ1 = 1.

(A − 1)v1 =
1
3

−4 2 2
2 −4 2
2 2 −4

x
y
z

 = 0

Has the solution

v1 =

1
1
1

 .



Another example in R3

For the eigenvector to the eigenvalue λ1 = −1 we solve

(A + 1)v =
1
3

2 2 2
2 2 2
2 2 2

x
y
z

 = 0

This is equivalent to
x + y + z = 0

As we have one equation for three variables we can find two linearly independent
solutions.

v2 =

 1
0

−1

 , v3 =

 0
1

−1

 .



Another example in R3

The transformation matrix T is

T =

1 1 0
1 0 1
1 −1 −1


Its inverse is

T−1 =
1
3

 1 1 1
2 −1 −1

−1 2 −1


Check that

T−1AT = B =

1 0 0
0 −1 0
0 0 −1





This week there will be an exercise class on Friday!

Have a nice week!


	Linear algebra

