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Applications of linear algebra

Linear algebra helps to find the local extrema of functions in more than one variable.



Local extrema

Let U ⊆ Rn be an open set and f : U → R a function. A point x ∈ U is called local
maximum of f if an environment V ⊂ U of x exists with

f (x) > f (y) for all y ∈ V .

A point x ∈ U is called local minimum of f if an environment V ⊂ U of x exists with

f (x) 6 f (y) for all y ∈ V .



The Hessian

Let U ⊆ Rn be an open set and let

f : U → R
(x1, . . . , xn) 7→ f (x1, . . . , xn)

be a function whose first and second partial derivatives exist and are continuous.

The Hessian matrix of f in x ∈ U is the n × n-matrix

(Hess f )(x) :=
(

∂2

∂xi∂xj
f (x)

)
16i6n
16j6n

=
(
fij(x)

)
16i6n
16j6n

.

This matrix is symmetric since for 1 6 i 6 n, 1 6 j 6 n

fij(x) = fji(x) .



Symmetric matrices

An n × n-matrix A is called symmetric if and only if A = At .

A symmetric matrix A is
I positive definite if all its eigenvalues are positive,
I negative definite if all its eigenvalues are negative,
I indefinite if there is at least one positive and one negative eigenvalue.



Local extrema

Let U ⊂ Rn be an open set and f : U → R a partial differentiable function. If f has a local
extremum in the point x (i.e. a local maximum or a local minimum), then

∇f (x) = 0 .

As for functions in one variable, the reverse is not true.



Local extrema

Let U ⊂ Rn be open, f : U → R a function whose first and second partial derivatives exist
and are continuous. Let x ∈ U with

∇f (x) = 0 .

I If (Hess f )(x) is positive definite, then f has a local minimum in x .
I If (Hess f )(x) is negative definite, then f has a local maximum in x .
I If (Hess f )(x) is indefinite, then f doesn’t have a local extremum in x .

In the other cases there may not be a local extremum.



Examples

The function f (x , y) := x2 + y2 has a local minimum in (0,0) since ∇f (0,0) = (0,0) and
the Hessian

(Hess f )(0,0) =
(

2 0
0 2

)
is positive definite.



Examples

The function g(x , y) := 2− x2 − y2 has a local maximum in (0,0) since ∇g(0,0) = (0,0)
and the Hessian

(Hessg)(0,0) =
(
−2 0

0 −2

)
is negative definite.



Examples

The function h(x , y) := x2 − y2 satisfies ∇h(0,0) = (0,0) and the Hessian

(Hessh)(0,0) =
(

2 0
0 −2

)
is indefinite. The function has a saddle point in (0,0).



Examples

For the function f (x , y) := x3 + y3 we have ∇f (x , y) = (3x2,3y2) and the Hessian

(Hess f )(x , y) =
(

6x 0
0 6y

)
In (0,0) we have ∇f (0,0) = (0,0) and the Hessian

(Hess f )(0,0) =
(

0 0
0 0

)



Problem

Consider the function
f (x , y) = 1 + x2 − y2

on the set

S =

{
(x , y) ∈ R2

∣∣∣∣ x2

4
+ y2 6 1

}
.

Find the values of (x , y) at which the function f attains its global extrema.



Problem



Problem

We first consider the inner points of the ellipse. The gradient of f (x , y) = 1 + x2 − y2 is

∇f (x , y) = (2x ,−2y) .

The gradient is zero if and only if (x , y) = (0,0). Hence the origin is the only candidate for
an extremum in the inner of the ellipse.

The Hessian in (x , y) is

(Hess f )(x , y) =
(

2 0
0 −2

)
.

In this case the Hessian is constant.



Problem

We know that
∇f (0,0) = (2 · 0,−2 · 0) = (0,0) .

The Hessian in (0,0) is

(Hess f )(0,0) =
(

2 0
0 −2

)
and the point (0,0) is a saddle point of f .



Problem

We now consider f on the boundary x2

4 + y2 = 1 and substitute

f (x , y) = x2 + 1− y2︸ ︷︷ ︸
= x2

4

=
5
4

x2 .

The first and second derivatives of the function

g(x) =
5
4

x2

are
g′(x) =

5
2

x and g′′(x) =
5
2
.

We consider the zeros of g′(x).



Problem

We consider the values of x with

g′(x) =
5
2

x = 0 ⇐⇒ x = 0 .

Since g′′(0) = 5
2 > 0 these are local minima with

f (0,−1) = 0 = g(0) and f (0,1) = 0 = g(0) .

Since g is a function on the interval [−2,2], we have to study the function g on the
boundary of this interval.



Problem

We study g(x) = 5
4 x2 in x = −2 and x = 2.

g(−2) = 5 = f (−2,0)

and
g(2) = 5 = f (2,0)

These are local maxima.

The global minima are (0,−1) and (0,1) and the global maxima are (−2,0) and (2,0).



Another problem
Find the absolute extrema of the surface

f (x , y) = (4x − x2) cos(y)

on the rectangular plate 1 6 x 6 3, −π
4 6 y 6 π

4 .



Another problem



Another problem

The gradient of the function f (x , y) = (4x − x2) cos(y) is

∇f (x , y) =
(
(4− 2x) cos(y), −(4x − x2) sin(y)

)
On our plate 1 6 x 6 3, −π

4 6 y 6 π
4

fx(x , y) = 0 only for x = 2
fy (x , y) = 0 only for y = 0

We have
f (2,0) = 4 .



Another problem

∇f (x , y) =
(
(4− 2x) cos(y), −(4x − x2) sin(y)

)
(Hess f )(x , y) =

(
−2 cos(y) (2x − 4) sin(y)

(2x − 4) sin(y) −(4x − x2) cos(y)

)

(Hess f )(2,0) =
(
−2 0
0 −4

)



Another problem

We need to check the boundary.

f (1, y) = 3 cos(y) , with − π

4
6 y 6

π

4
f (3, y) = 3 cos(y) , with − π

4
6 y 6

π

4

f
(

x ,−π
4

)
=

4x − x2
√

2
, with 1 6 x 6 3

f
(

x ,
π

4

)
=

4x − x2
√

2
, with 1 6 x 6 3



Another problem

The function 3 cos(y) only has a maximum at y = 0 and

f (1,0) = f (3,0) = 3 .

Next the function 4x−x2
√

2
only has a maximum at x = 2 and

f
(

2,−π
4

)
= f
(

2,
π

4

)
=

4√
2
.



Another problem

Finally

f
(

1,−π
4

)
= f
(

1,
π

4

)
= f
(

3,−π
4

)
= f
(

3,
π

4

)
=

3
√

2
2

I The absolute maximum is 4 at (2,0).

I the absolute minimum is 3
√

2
2 at

(
1,−π

4

)
,
(
1, π4

)
,
(
3,−π

4

)
and

(
3, π4

)
.



That’s all Folks!
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