Mathematics

IBS

Cornelia Busch

ETH Zürich

December 6， 2022

Applications of linear algebra

Linear algebra helps to find the local extrema of functions in more than one variable．

Local extrema

Let $U \subseteq \mathbb{R}^{n}$ be an open set and $f: U \rightarrow \mathbb{R}$ a function. A point $x \in U$ is called local maximum of f if an environment $V \subset U$ of x exists with

$$
f(x) \geqslant f(y) \quad \text { for all } y \in V
$$

A point $x \in U$ is called local minimum of f if an environment $V \subset U$ of x exists with

$$
f(x) \leqslant f(y) \quad \text { for all } y \in V
$$

The Hessian

Let $U \subseteq \mathbb{R}^{n}$ be an open set and let

$$
f: \begin{aligned}
U & \rightarrow \mathbb{R} \\
\left(x_{1}, \ldots, x_{n}\right) & \mapsto f\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

be a function whose first and second partial derivatives exist and are continuous.
The Hessian matrix of f in $x \in U$ is the $n \times n$-matrix

$$
(\text { Hess } f)(x):=\left(\frac{\partial^{2}}{\partial x_{i} \partial x_{j}} f(x)\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}}=\left(f_{i j}(x)\right)_{\substack{1 \leqslant i \leqslant n \\ 1 \leqslant j \leqslant n}} .
$$

This matrix is symmetric since for $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant n$

$$
f_{i j}(x)=f_{j i}(x)
$$

Symmetric matrices

An $n \times n$-matrix A is called symmetric if and only if $A=A^{t}$.
A symmetric matrix A is

- positive definite if all its eigenvalues are positive,
- negative definite if all its eigenvalues are negative,
- indefinite if there is at least one positive and one negative eigenvalue.

Local extrema

Let $U \subset \mathbb{R}^{n}$ be an open set and $f: U \rightarrow \mathbb{R}$ a partial differentiable function. If f has a local extremum in the point x (i.e. a local maximum or a local minimum), then

$$
\nabla f(x)=0
$$

As for functions in one variable, the reverse is not true.

Local extrema

Let $U \subset \mathbb{R}^{n}$ be open, $f: U \rightarrow \mathbb{R}$ a function whose first and second partial derivatives exist and are continuous. Let $x \in U$ with

$$
\nabla f(x)=0
$$

- If (Hess $f)(x)$ is positive definite, then f has a local minimum in x.
- If $($ Hess $f)(x)$ is negative definite, then f has a local maximum in x.
- If (Hess $f)(x)$ is indefinite, then f doesn't have a local extremum in x. In the other cases there may not be a local extremum.

Examples

The function $f(x, y):=x^{2}+y^{2}$ has a local minimum in $(0,0)$ since $\nabla f(0,0)=(0,0)$ and the Hessian

$$
(\text { Hess } f)(0,0)=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right)
$$

is positive definite.

Examples

The function $g(x, y):=2-x^{2}-y^{2}$ has a local maximum in $(0,0)$ since $\nabla g(0,0)=(0,0)$ and the Hessian

$$
(\text { Hess } g)(0,0)=\left(\begin{array}{rr}
-2 & 0 \\
0 & -2
\end{array}\right)
$$

is negative definite.

Examples

The function $h(x, y):=x^{2}-y^{2}$ satisfies $\nabla h(0,0)=(0,0)$ and the Hessian

$$
(\text { Hess } h)(0,0)=\left(\begin{array}{rr}
2 & 0 \\
0 & -2
\end{array}\right)
$$

is indefinite. The function has a saddle point in $(0,0)$.

Examples

For the function $f(x, y):=x^{3}+y^{3}$ we have $\nabla f(x, y)=\left(3 x^{2}, 3 y^{2}\right)$ and the Hessian

$$
(\text { Hess } f)(x, y)=\left(\begin{array}{cc}
6 x & 0 \\
0 & 6 y
\end{array}\right)
$$

In $(0,0)$ we have $\nabla f(0,0)=(0,0)$ and the Hessian

$$
(\operatorname{Hess} f)(0,0)=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

Problem

Consider the function

$$
f(x, y)=1+x^{2}-y^{2}
$$

on the set

$$
S=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, \frac{x^{2}}{4}+y^{2} \leqslant 1\right.\right\} .
$$

Find the values of (x, y) at which the function f attains its global extrema.

Problem

Problem

We first consider the inner points of the ellipse. The gradient of $f(x, y)=1+x^{2}-y^{2}$ is

$$
\nabla f(x, y)=(2 x,-2 y)
$$

The gradient is zero if and only if $(x, y)=(0,0)$. Hence the origin is the only candidate for an extremum in the inner of the ellipse.

The Hessian in (x, y) is

$$
(H e s s f)(x, y)=\left(\begin{array}{rr}
2 & 0 \\
0 & -2
\end{array}\right)
$$

In this case the Hessian is constant.

Problem

We know that

$$
\nabla f(0,0)=(2 \cdot 0,-2 \cdot 0)=(0,0)
$$

The Hessian in $(0,0)$ is

$$
(\text { Hess } f)(0,0)=\left(\begin{array}{rr}
2 & 0 \\
0 & -2
\end{array}\right)
$$

and the point $(0,0)$ is a saddle point of f.

Problem

We now consider f on the boundary $\frac{x^{2}}{4}+y^{2}=1$ and substitute

$$
f(x, y)=x^{2}+\underbrace{1-y^{2}}_{=\frac{x^{2}}{4}}=\frac{5}{4} x^{2} .
$$

The first and second derivatives of the function

$$
g(x)=\frac{5}{4} x^{2}
$$

are

$$
g^{\prime}(x)=\frac{5}{2} x \quad \text { and } \quad g^{\prime \prime}(x)=\frac{5}{2} .
$$

We consider the zeros of $g^{\prime}(x)$.

Problem

We consider the values of x with

$$
g^{\prime}(x)=\frac{5}{2} x=0 \quad \Longleftrightarrow \quad x=0
$$

Since $g^{\prime \prime}(0)=\frac{5}{2}>0$ these are local minima with

$$
f(0,-1)=0=g(0) \quad \text { and } \quad f(0,1)=0=g(0)
$$

Since g is a function on the interval $[-2,2]$, we have to study the function g on the boundary of this interval.

Problem

We study $g(x)=\frac{5}{4} x^{2}$ in $x=-2$ and $x=2$.

$$
g(-2)=5=f(-2,0)
$$

and

$$
g(2)=5=f(2,0)
$$

These are local maxima.
The global minima are $(0,-1)$ and $(0,1)$ and the global maxima are $(-2,0)$ and $(2,0)$.

Another problem

Find the absolute extrema of the surface

$$
f(x, y)=\left(4 x-x^{2}\right) \cos (y)
$$

on the rectangular plate $1 \leqslant x \leqslant 3,-\frac{\pi}{4} \leqslant y \leqslant \frac{\pi}{4}$.

Another problem

Another problem

The gradient of the function $f(x, y)=\left(4 x-x^{2}\right) \cos (y)$ is

$$
\nabla f(x, y)=\left((4-2 x) \cos (y),-\left(4 x-x^{2}\right) \sin (y)\right)
$$

On our plate $1 \leqslant x \leqslant 3,-\frac{\pi}{4} \leqslant y \leqslant \frac{\pi}{4}$

$$
\begin{array}{lll}
f_{x}(x, y)=0 & \text { only for } & x=2 \\
f_{y}(x, y)=0 & \text { only for } & y=0
\end{array}
$$

We have

$$
f(2,0)=4
$$

Another problem

$$
\begin{aligned}
\nabla f(x, y) & =\left((4-2 x) \cos (y),-\left(4 x-x^{2}\right) \sin (y)\right) \\
(\text { Hess } f)(x, y) & =\left(\begin{array}{cc}
-2 \cos (y) & (2 x-4) \sin (y) \\
(2 x-4) \sin (y) & -\left(4 x-x^{2}\right) \cos (y)
\end{array}\right) \\
(\text { Hess } f)(2,0) & =\left(\begin{array}{cc}
-2 & 0 \\
0 & -4
\end{array}\right)
\end{aligned}
$$

Another problem

We need to check the boundary.

$$
\begin{array}{rlrl}
f(1, y) & =3 \cos (y), & \text { with }-\frac{\pi}{4} \leqslant y \leqslant \frac{\pi}{4} \\
f(3, y) & =3 \cos (y), & \text { with }-\frac{\pi}{4} \leqslant y \leqslant \frac{\pi}{4} \\
f\left(x,-\frac{\pi}{4}\right) & =\frac{4 x-x^{2}}{\sqrt{2}}, & & \text { with } 1 \leqslant x \leqslant 3 \\
f\left(x, \frac{\pi}{4}\right) & =\frac{4 x-x^{2}}{\sqrt{2}}, & & \text { with } 1 \leqslant x \leqslant 3
\end{array}
$$

Another problem

The function $3 \cos (y)$ only has a maximum at $y=0$ and

$$
f(1,0)=f(3,0)=3
$$

Next the function $\frac{4 x-x^{2}}{\sqrt{2}}$ only has a maximum at $x=2$ and

$$
f\left(2,-\frac{\pi}{4}\right)=f\left(2, \frac{\pi}{4}\right)=\frac{4}{\sqrt{2}}
$$

Another problem

Finally

$$
f\left(1,-\frac{\pi}{4}\right)=f\left(1, \frac{\pi}{4}\right)=f\left(3,-\frac{\pi}{4}\right)=f\left(3, \frac{\pi}{4}\right)=\frac{3 \sqrt{2}}{2}
$$

- The absolute maximum is 4 at $(2,0)$.
- the absolute minimum is $\frac{3 \sqrt{2}}{2}$ at $\left(1,-\frac{\pi}{4}\right),\left(1, \frac{\pi}{4}\right),\left(3,-\frac{\pi}{4}\right)$ and $\left(3, \frac{\pi}{4}\right)$.

That's all Folks!

