4.1. Zwischenwertsatz 1

Es sei $f:[0,1]\to\mathbb{R}$ eine stetige Funktion. Wir nehmen an, es gelte: f(0)=f(1). Beweisen Sie, dass es ein $c\in[0,\frac{1}{2}]$ gibt mit:

$$f\left(c + \frac{1}{2}\right) = f(c)$$

Hinweis: Wenden Sie den Zwischenwertsatz auf die Funktion $g:[0,\frac{1}{2}]\to\mathbb{R}$ an, mit $g(x):=f(x+\frac{1}{2})-f(x)$.

4.2. Zwischenwertsatz 2

Es sei

$$f:[-2,-1]\cup[1,2]\to\mathbb{R}$$

eine stetige Funktion. Nehmen Sie an, dass f(-2) = -1, f(2) = 1. Kann man schliessen, dass ein $x \in [-2, -1] \cup [1, 2]$ existiert, sodass f(x) = 0? Begründen Sie ihre Antwort.

4.3. Gleichmässige Stetigkeit

Sind die folgenden Funktionen gleichmässig stetig?

(a)
$$f:(0,1)\to \mathbb{R}, \quad f(x)=x^2$$

(b)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x^2$

(c)
$$f:[1,\infty)\to\mathbb{R}, \quad f(x)=\log(x)$$

(d)
$$f:[0,\infty)\to\mathbb{R}, \quad f(x)=\sqrt{x}$$

(e)
$$f:(0,1) \to \mathbb{R}, \quad f(x) = x \sin(\frac{1}{x})$$