Gegeben sei der Vektor v
.
Für welche Einträge passt die Matrix
A = \begin{pmatrix}
A & \color{red}{b} \\ \color{blue}{c} & D \end{pmatrix}
zu der unten angegebenen Situation, wenn der zweite Vektor
\color{orange} A\cdot v
ist?
\color{red}b
=
B
\color{blue}c
=
C
Suche die Einträge \color{red}b
und \color{blue}c
mit
A \cdot \begin{pmatrix} X \\ Y \end{pmatrix} =
\color{orange}\begin{pmatrix} X*A+B*Y \\ X*C+D*Y \end{pmatrix}
.
Dies ist zunächst die Gleichung
\begin{pmatrix} negParens(X) \cdot negParens(A) + negParens(Y) \cdot {\color{red}b} \\
negParens(X) \cdot {\color{blue}c} + negParens(Y) \cdot negParens(D) \end{pmatrix} =
\color{orange}\begin{pmatrix} X*A+B*Y \\ X*C+D*Y \end{pmatrix}
.
In den beiden Koordinaten finden zwei Gleichungen
X*A + negParens(Y) \cdot {\color{red}b}
= \color{orange}
X*A+B*Y
und
negParens(X) \cdot {\color{blue}c} + Y*D
= \color{orange}
X*C+D*Y
.
Also \color{red}b
=B
und \color{blue}c
=C
.