de-CH
utf-8
math graphie polynomials
Phasenverschiebung berechnen
t-03-04
number
12
randRangeExclude(1,7,[2,4,6]) randRange(1,3) n-2 (q-8+2*n)/4

Seien {\color{orange}\varphi} = \color{red}q \cdot \pi ein Winkel mit \displaystyle piFraction((L-1/4)*3.14159,1) < {\color{orange}\varphi} < piFraction((L+1/4)*3.14159,1) und \color{blue}f die Funktion mit \displaystyle {\color{blue}f(x) = \sin \left(\frac{q}4 x-{\color{orange}\varphi}\right)} .

Bestimmen Sie \color{red}q so, dass \displaystyle {\color{blue}f\left(\pi\right) = y} gilt.

L

Es ist \displaystyle {\color{blue}f\left(\pi\right) = \sin \left(piFraction(q/4*3.14,1) -{\color{orange}\varphi}\right)} .

Wir suchen nun {\color{orange}\varphi} mit \displaystyle piFraction((L-1/4)*3.14159,1) < {\color{orange}\varphi} < piFraction((L+1/4)*3.14159,1) und \displaystyle {\color{blue} \sin \left(piFraction(q/4*3.14,1) -{\color{orange}\varphi}\right) = y} .

Dies gibt

\displaystyle piFraction(q/4*3.14,1) -{\color{orange}\varphi} = piFraction((4-n)/2*3.14,1) und somit \displaystyle {\color{orange}\varphi} = piFraction((q-8+2*n)/4*3.14,1),

und damit \color{red}q = fractionReduce((q-8+2*n),4).