de-CH
utf-8
math math-format
Gebietsintegral über (gedrehtes) Rechteck
int2-01-05
multiple
4368
randRangeExclude(-8,8,[0,1,-1]) randRangeExclude(-8,8,[0,1,-1,A])
randFromArray([-8,-4,-2,2,4,8]) randFromArray([-8,-4,-2,2,4,8]) randFromArrayExclude([-8,-4,-2,2,4,8],[N2x]) randFromArrayExclude([-8,-4,-2,2,4,8],[N2y]) randRangeNonZero(-8,8) randRangeExclude(-8,8,[P1x]) P1x + N2x P1y + N2y P1x + N3x P1y + N3y P3x+P2x-P1x P3y+P2y-P1y
min(P1x,P2x,P3x,P4x) max(P1x,P2x,P3x,P4x) randFromArrayExclude([P1x,P2x,P3x,P4x],[X1,X4]) randFromArrayExclude([P1x,P2x,P3x,P4x],[X1,X4,V]) max(V,W) min(V,W) min(P1y,P2y,P3y,P4y) max(P1y,P2y,P3y,P4y)
P1y
P2y
P3y
P4y
P1y
P2y
P3y
P4y
P1y
P2y
P3y
P4y
P1y
P2y
P3y
P4y
fractionReduce(Y2-Y1,X2-X1,small=true) fractionReduce(Y3-Y1,X3-X1,small=true) (Y2-Y1)/(X2-X1) (Y3-Y1)/(X3-X1) fractionReduce(Y1*(X3-X1)-(Y3-Y1)*X1,X3-X1,small=true) fractionReduce(Y1*(X2-X1)-(Y2-Y1)*X1,X2-X1,small=true) fractionReduce(Y4*(X2-X1)-(Y2-Y1)*X4,X2-X1,small=true) fractionReduce(Y4*(X3-X1)-(Y3-Y1)*X4,X3-X1,small=true) Y1-s13N*X1 Y1-s12N*X1 Y4-s12N*X4 Y4-s13N*X4
s12 s13 s13 s13 s13 s12 gY12 gY13 gY42 gY13 gY42 gY43 s12N s13N s13N s13N s13N s12N gY12N gY13N gY42N gY13N gY42N gY43N
s13 s12 s13 s13 s12 s13 gY13 gY12 gY13 gY42 gY43 gY42 s13N s12N s13N s13N s12N s13N gY13N gY12N gY13N gY42N gY43N gY42N
fractionReduce(2*A*sUoN-2*A*sUuN+B*sUoN*sUoN- B* sUuN*sUuN,2) A*sUoN- A*sUuN+(B*sUoN*sUoN- B*sUuN*sUuN)/2 2*(sUoN*gyUoN-sUuN*gyUuN)+gyUoN-gyUuN gyUoN*gyUoN-gyUuN*gyUuN fractionReduce(2*A*sMoN-2*A*sMuN+B*sMoN*sMoN- B* sMuN*sMuN,2) A*sMoN- A*sMuN+(B*sMoN*sMoN- B*sMuN*sMuN)/2 2*(sMoN*gyMoN-sMuN*gyMuN)+gyMoN-gyMuN gyMoN*gyMoN-gyMuN*gyMuN fractionReduce(2*A*sOoN-2*A*sOuN+B*sOoN*sOoN- B* sOuN*sOuN,2) A*sOoN- A*sOuN+(B*sOoN*sOoN- B*sOuN*sOuN)/2 2*(sOoN*gyOoN-sOuN*gyOuN)+gyOoN-gyOuN gyOoN*gyOoN-gyOuN*gyOuN

Gegeben sei die Funktion f: \mathbb R^2 \to \mathbb R mit f(x,y) = A x + B y.

Berechnen Sie das Integral \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA über dem Gebiet \color{orange}D.



graphInit({ range: [[-16.5, 16.5],[-16.5, 16.5]], scale: [20,20], tickStep: [1,1], gridStep: [1,1], labelStep: [4,4], gridOpacity: 0.1, axisOpacity: 0.8, tickOpacity: 0.6, labelOpacity: 0.8 }); label( [ 0, 16 ], "y", "right" ); label( [16,0 ], "x", "above" ); //Rechteck var p1 = [P1x, P1y]; var p2 = [P2x, P2y]; var p3 = [P3x, P3y]; var p4 = [P4x, P4y]; line(p1, p2, { stroke: ORANGE, strokeWidth: 3.2 }); line(p1, p3, { stroke: ORANGE, strokeWidth: 3.2 }); line(p3, p4, { stroke: ORANGE, strokeWidth: 3.2 }); line(p2, p4, { stroke: ORANGE, strokeWidth: 3.2 }); label([(P4x+P1x)/2, (P4y+P1y)/2], "D", { color: ORANGE });


a \displaystyle \int \int_{{\color{orange}D}} f(x,y) dA = (2*iOqN*(pow(X4,3)-pow(X3,3)) + 3* iOlN*(pow(X4,2)-pow(X3,2)) + 6 *iOcN*(X4-X3) + 2*iMqN*(pow(X3,3)-pow(X2,3)) + 3* iMlN*(pow(X3,2)-pow(X2,2)) + 6 *iMcN*(X3-X2) + 2*iUqN*(pow(X2,3)-pow(X1,3)) + 3* iUlN*(pow(X2,2)-pow(X1,2)) + 6 *iUcN*(X2-X1))/6

Zerlege {\orange{D}} in drei einfache Bereiche {\orange{D}} = {\orange{D_1}} \cup {\orange{D_2}} \cup {\orange{D_3}}:

line([X2, Ymax+1], [X2, Ymin-1 ], { stroke: BLUE, strokeWidth: 3.2 }); line([X3, Ymax+1], [X3, Ymin-1 ], { stroke: BLUE, strokeWidth: 3.2 }); label([X2, .75], "x_2", "right", { color: BLUE}); label([X3, .75], "x_3", "right", { color: BLUE }) label([X1, .75], "x_1", "left", { color: ORANGE }); label([X4, .75], "x_4", "right", { color: ORANGE }) line([X1,.5], [X1, -.5 ], { stroke: ORANGE, strokeWidth: 3.2 }); line([X4, .5], [X4, -.5 ], { stroke: ORANGE, strokeWidth: 3.2 }); line([X2,.5], [X2, -.5 ], { stroke: BLUE, strokeWidth: 3.2 }); line([X3, .5], [X3, -.5 ], { stroke: BLUE, strokeWidth: 3.2 });

{\orange{D_1}} = \left\{ (x,y) \, | \, X1 \leq x \leq X2, \; sUu x + gyUu \leq y \leq sUo x + gyUo\right\} und

{\orange{D_2}} = \left\{ (x,y) \, | \, X2 \leq x \leq X3, \; sMu x + gyMu \leq y \leq sMo x + gyMo\right\} und

{\orange{D_3}} = \left\{ (x,y) \, | \, X3 \leq x \leq X4, \; sOu x + gyOu \leq y \leq sOo x + gyOo\right\}.

Dann ist

\displaystyle \int\int_{\orange{D}} f(x,y) dA = \int_{X1}^{X2} \int_{sUu x + gyUu}^{sUo x + gyUo} (Ax + By) \, dy dx + \int_{X2}^{X3} \int_{sMu x + gyMu}^{sMo x + gyMo} (Ax + By) \, dy dx + \int_{X3}^{X4} \int_{sOu x + gyOu}^{sOo x + gyOo} (Ax + By) \, dy dx .

Berechne die innere Integration für den ersten Summanden

\displaystyle \int_{X1}^{X2} \int_{sUu x + gyUu}^{sUo x + gyUo} (Ax + By) \, dy dx = \int_{X1}^{X2} \left( A x \cdot y + fractionReduce(B,2)\cdot y^2\bigg|_{sUu x + gyUu}^{sUo x + gyUo} \right) \; dx = \int_{X1}^{X2} \left(iUq x^2 + iUlN x + iUcN \right) \; dx .

Die äussere Integration ist dann

\displaystyle \int_{X1}^{X2} \left(iUq x^2 + iUlN x + iUcN \right) \; dx =fractionReduce(iUqN,3) x^3 + fractionReduce(iUlN,2) x^2 + iUcN x \bigg|_{X1}^{X2} = fractionReduce(2*iUqN*(pow(X2,3)-pow(X1,3)) + 3* iUlN*(pow(X2,2)-pow(X1,2)) + 6 *iUcN*(X2-X1),6).

Die beiden anderen Summanden sind :

\displaystyle \int_{X2}^{X3} \int_{sMu x + gyMu}^{sMo x + gyMo} (Ax + By) \, dy dx = fractionReduce(2*iMqN*(pow(X3,3)-pow(X2,3)) + 3* iMlN*(pow(X3,2)-pow(X2,2)) + 6 *iMcN*(X3-X2),6) und \displaystyle \int_{X3}^{X4} \int_{sOu x + gyOu}^{sOo x + gyOo} (Ax + By) \, dy dx = fractionReduce(2*iOqN*(pow(X4,3)-pow(X3,3)) + 3* iOlN*(pow(X4,2)-pow(X3,2)) + 6 *iOcN*(X4-X3),6).

Damit ist zusammen:

\displaystyle \int\int_{\orange{D}} f(x,y) dA = fractionReduce(2*iOqN*(pow(X4,3)-pow(X3,3)) + 3* iOlN*(pow(X4,2)-pow(X3,2)) + 6 *iOcN*(X4-X3) + 2*iMqN*(pow(X3,3)-pow(X2,3)) + 3* iMlN*(pow(X3,2)-pow(X2,2)) + 6 *iMcN*(X3-X2) + 2*iUqN*(pow(X2,3)-pow(X1,3)) + 3* iUlN*(pow(X2,2)-pow(X1,2)) + 6 *iUcN*(X2-X1),6).