5.1. Weak solutions

Consider the transport equation

$$
\begin{equation*}
u_{y}+\frac{1}{2} \partial_{x}\left(u^{2}\right)=0 . \tag{1}
\end{equation*}
$$

(a) Suppose that u is a classical solution to the previous transport equation. What equation does u^{2} fulfil? Write it in the form

$$
\begin{equation*}
v_{y}+\partial_{x}(F(v))=0 \tag{2}
\end{equation*}
$$

for some appropriate F.
(b) Consider the weak solution of Equation (1) given by

$$
w(x, y)= \begin{cases}3 & \text { if } x<\frac{3}{2} y-1 \\ 0 & \text { if } x>\frac{3}{2} y-1\end{cases}
$$

Show that w^{2} is not a weak solution of (2). Can you explain what is the problem?
5.2. Balance laws A generalization of the conservation law are the so called balance laws

$$
\left\{\begin{array}{l}
u_{y}+(f(u, x, y))_{x}=g(u, x, y) \\
u(x, 0)=h(x)
\end{array}\right.
$$

Recalling that here $y>0$ represents the time variable, the above PDE models the flow of mass with concentration $u(x, y)$ associated to a flux depending on the density, the time and the space. The term g represents the source term of the system.
(a) Consider the transport equation with source term: $f(u, x, y)=c u, c>0$, and $g(u, x, y)=2 y$. Find a solution. Do the same for a general time dependent source term $g=g(y)$.
(b) Consider the modified Burger's equation in which the flux increases linearly in time: $f(u, x, y)=\frac{u^{2}}{2} y, g \equiv 0$. Set the initial condition $h(x)=1$ if $x<0, h(x)=1-x$ if $x \in[0,1]$ and $h(x)=0$ if $x>1$. Find a solution. What is the main difference with the solution of the Burger's equation $\left(f=\frac{u^{2}}{2}\right) ?^{1}$

[^0]5.3. Multiple choice Cross the correct answer(s).
(a) The second order linear PDE given by
$$
u_{x}+x^{2} u_{x x}+2 x \sin (y) u_{x y}-\cos ^{2}(y) u_{y y}+e^{x}=0
$$
is
hyperbolic if $x \neq 0$
\bigcirc parabolic in $\left\{y=k \frac{\pi}{2}: k \in \mathbb{Z}\right\}$
Overywhere hyperbolic
\bigcirc parabolic in $x=0$
(b) Let $A=\left(a_{i j}\right)$ be a (2×2) real matrix, and $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ any smooth function. Then, the PDE^{2}
$$
\operatorname{Trace}\left(A \cdot D^{2} u\right)=f
$$
is
\bigcirc elliptic if A is symmetric andhyperbolic if A is antisymmetric and $\operatorname{det}(A)>0$ $a_{11}=a_{22} \neq 0$parabolic if A is symmetric and $\operatorname{det}(A)<0$hyperbolic if A is antisymmetric and $a_{11}=-a_{22}>0$
(c) The same options as point (b), but with the PDE
$$
\operatorname{div}(A \cdot \nabla u)=f
$$
(d) The following conservation law
\[

\left\{$$
\begin{array}{l}
u_{y}+f(u)_{x}=0 \\
u(x, 0)=c>0 \text { for } x<0 \text { and } u(x, 0)=0 \text { for } x \geq 0
\end{array}
$$\right.
\]

has a shock curve of slope equal to 8 if
$\bigcirc=2$ and $f(u)=u^{4}$
$c=2$ and $f(u)=-u^{4}$
$\bigcirc=1$ and $f(u)=u^{3}$
$c=1$ and $f(u)=2 u^{2}+6 u-1$

[^1]
Extra exercises

5.4. Weak solutions II

Consider the equation

$$
e^{-u} u_{x}+u_{y}=0
$$

with initial value $u(x, 0)=0$ if $x<0$, and $u(x, 0)=\alpha>0$ if $x>0$.
(a) Find a weak solution for any $\alpha>0$ with a single discontinuity for $y \geq 0$.
(b) Show that such solution fulfils the entropy condition for all $\alpha>0$.

5.5. Finding shock waves

Consider the transport equation

$$
u_{y}+u^{2} u_{x}=0,
$$

with initial condition $u(x, 0)=1$ for $x \leq 0, u(x, 0)=0$ for $x \geq 1$, and

$$
u(x, 0)=\sqrt{1-x} \quad \text { for } \quad 0<x<1
$$

(a) Find the solution using the method of characteristics. Up to which time is the solution defined in a classical sense?
(b) Find a weak solution for all times $y \geq 0$.

[^0]: ${ }^{1}$ Try to sketch the characteristic curves

[^1]: ${ }^{2}$ Recall the definition of the Hessian matrix $\left(D^{2} u\right)_{i j}=u_{x_{i} x_{j}}$. To start simple: what does it happen when A is the identity matrix?

