10.1. Unique solution

Let $k>0$. Let D be a bounded planar domain in \mathbb{R}^{2}. Let $u=u(x, y)$ be a solution to the Dirichlet problem for the reduced Helmholtz energy in D. That is, let u solve

$$
\left\{\begin{aligned}
\Delta u(x, y)-k u(x, y) & =0, & & \text { for }(x, y) \in D \\
u(x, y) & =g(x, y), & & \text { for }(x, y) \in \partial D .
\end{aligned}\right.
$$

Show that there exists at most a unique solution twice differentiable in D and continuous in \bar{D}, that is, $u \in C^{2}(D) \cap C(\bar{D})$.

Hint: Assume that there exist two solutions u_{1} and u_{2}, and consider the difference $v=u_{1}-u_{2}$.
10.2. The mean-value principle Let D be a planar domain, and let $B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)$ (ball of radius R centered at $\left(x_{\circ}, y_{\circ}\right)$) be fully contained in D. Let u be an harmonic function in $D, \Delta u=0$ in D. Then, the mean-value principle says that the value of u at $\left(x_{\circ}, y_{\circ}\right)$ is the average value of u on $\partial B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)$. That is,

$$
u\left(x_{\circ}, y_{\circ}\right)=\frac{1}{2 \pi R} \oint_{\partial B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)} u(x(s), y(s)) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x_{\circ}+R \cos \theta, y_{\circ}+R \sin \theta\right) d \theta
$$

Show that $u\left(x_{\circ}, y_{\circ}\right)$ is also equal to the average of u in $B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)$, that is,

$$
u\left(x_{\circ}, y_{\circ}\right)=\frac{1}{\pi R^{2}} \int_{B_{R}\left(\left(x_{\circ}, y_{0}\right)\right)} u(x, y) d x d y .
$$

10.3. Maximum principle Consider the disk $D:=\left\{(x, y) \in \mathbb{R}^{2}: \sqrt{x^{2}+y^{2}}<1\right\}$. Let $u=u(x, y)$ be a function twice differentiable in D and continuous in \bar{D}, solving

$$
\begin{cases}\Delta u(x, y)=0, & \text { in } D \\ u(x, y)=g(x, y), & \text { on } \partial D\end{cases}
$$

for some given function g.
(a) Suppose $g(x, y)=x^{2}+\frac{2}{\sqrt{2}} y$. Compute $u(0,0)$ and $\max _{(x, y) \in \bar{D}} u(x, y)$.
(b) Suppose now that g is any smooth function such that $g(x, y) \geq(3 x-y)$. Show that $u(1 / 3,0) \geq 1$, with equality if and only if $g(x, y)=3 x-y$.

Hint: the function $3 x-y$ is harmonic.
10.4. Multiple choice Cross the correct answer(s).
(a) Consider the Neumann problem for the Poisson equation

$$
\begin{cases}\Delta u=\rho, & \text { in } D \\ \partial_{\nu} u=g, & \text { on } \partial D\end{cases}
$$

where $D=B(0, R)$ is the ball of radius $R>0$ with centre in the origin of \mathbb{R}^{2}, and ρ and g are given in polar coordinates (r, θ) by

$$
\rho(r, \theta)=r^{\alpha} \sin ^{2}(\theta), \text { and } g(r, \theta)=C \cos ^{2}(\theta)+r^{2021} \sin (\theta),
$$

for some constants $\alpha>0$ and $C>0$. For which values of $C>0$ does the problem satisfy the Neumann's necessary condition for existence of solutions?
○ $C=\frac{R^{\alpha+1}}{\alpha+2}$
$C=\frac{R^{\alpha+2}}{\alpha+2}$
○ $C=\frac{R^{\alpha+1}}{\alpha+1}$
$C=\frac{R^{\alpha+1}}{\alpha-1}$
(b) Consider the Dirichlet problem

$$
\begin{cases}\Delta u=0, & \text { in } D \\ u=\frac{x}{x^{2}+y^{2}} & \text { on } \partial D\end{cases}
$$

where the domain D is the anulus defined by $D:=\left\{(x, y) \in \mathbb{R}^{2}: 1<\sqrt{x^{2}+y^{2}}<2\right\}$. What is the maximum of u ?
$\bigcirc \frac{1}{2}$
$\bigcirc \frac{1}{4}$
$\bigcirc 1$$-1$

Extra exercises

10.5. Weak maximum principle Let B_{1} denote the unit ball in \mathbb{R}^{2} centered at the origin, and let $u=u(x, y)$ be twice differentiable in B_{1} and continuous in $\overline{B_{1}}$. Suppose that u solves the Dirichlet problem

$$
\left\{\begin{aligned}
\Delta u(x, y) & =-1, & & \text { for }(x, y) \in B_{1}, \\
u(x, y) & =g(x, y), & & \text { for }(x, y) \in \partial B_{1} .
\end{aligned}\right.
$$

Show that

$$
\max _{\bar{B}_{1}} u \leq \frac{1}{2}+\max _{\partial B_{1}} g
$$

Hint: search for a simple function w such that $\Delta w=1$, and use it to reduce the problem to an application of the weak maximum principle for harmonic functions.
10.6. The mean-value principle II (Hard) Let u be an harmonic function in \mathbb{R}^{2}, $\Delta u=0$ in \mathbb{R}^{2}. Use the result in Exercise 10.2 to show that for any smooth, radial, compactly-supported $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\int_{\mathbb{R}^{2}} \varphi(x, y) d x d y=1$, we have

$$
u\left(x_{\circ}, y_{\circ}\right)=\int_{\mathbb{R}^{2}} u(x, y) \varphi\left(x_{\circ}-x, y_{\circ}-y\right) d x d y
$$

(Harder) Use the above to show that u must be infinitely differentiable.

