10.1. Unique solution

Let k > 0. Let D be a bounded planar domain in \mathbb{R}^2 . Let u = u(x, y) be a solution to the Dirichlet problem for the reduced Helmholtz energy in D. That is, let u solve

$$\begin{cases} \Delta u(x,y) - ku(x,y) = 0, & \text{for } (x,y) \in D, \\ u(x,y) = g(x,y), & \text{for } (x,y) \in \partial D. \end{cases}$$

Show that there exists at most a unique solution twice differentiable in D and continuous in \overline{D} , that is, $u \in C^2(D) \cap C(\overline{D})$.

Hint: Assume that there exist two solutions u_1 and u_2 , and consider the difference $v = u_1 - u_2$.

SOL:

Let us use the hint. Let us suppose that there exist two solutions u_1 and u_2 fulfilling the Dirichlet problem. Let $v = u_1 - u_2$. Notice that v = v(x, y) solves

$$\begin{cases} \Delta v(x,y) - kv(x,y) &= 0, & \text{for } (x,y) \in D, \\ v(x,y) &= 0, & \text{for } (x,y) \in \partial D. \end{cases}$$

We just need to prove that $v \equiv 0$ in D. To do so, we will show that $\max_{\overline{D}} v = \min_{\overline{D}} v = 0$. We show both equalities by contradiction.

Notice that $\max_{\overline{D}} v \ge 0$, since v = 0 on ∂D . Let us suppose that $\max_{\overline{D}} v = M > 0$. In particular, there exists some $(x_{\circ}, y_{\circ}) \in D$ such that $v(x_{\circ}, y_{\circ}) = M > 0$, that is, v has a maximum at (x_{\circ}, y_{\circ}) . In particular, we know that $\Delta v(x_{\circ}, y_{\circ}) \le 0$. Therefore,

$$0 = \Delta v(x_{\circ}, y_{\circ}) - kv(x_{\circ}, y_{\circ}) \le -kM < 0,$$

a contradiction.

On the other hand, $\min_{\overline{D}} v \leq 0$, since v = 0 on ∂D . Let us suppose that $\min_{\overline{D}} v = m < 0$. In particular, there exists some $(x_{\circ}, y_{\circ}) \in D$ such that $v(x_{\circ}, y_{\circ}) = m < 0$, that is, v has a minimum at (x_{\circ}, y_{\circ}) . In particular, we know that $\Delta v(x_{\circ}, y_{\circ}) \geq 0$. Therefore,

$$0 = \Delta v(x_{\circ}, y_{\circ}) - kv(x_{\circ}, y_{\circ}) \ge -km > 0,$$

a contradiction. Therefore, if there exists a solution, is unique.

10.2. The mean-value principle Let D be a planar domain, and let $B_R((x_\circ, y_\circ))$ (ball of radius R centered at (x_\circ, y_\circ)) be fully contained in D. Let u be an harmonic

January 1, 2024

ETH Zürich	Analysis 3	D-MATH
HS 2023	Serie 10, Solutions	Prof. M. Iacobelli

function in D, $\Delta u = 0$ in D. Then, the mean-value principle says that the value of u at (x_{\circ}, y_{\circ}) is the average value of u on $\partial B_R((x_{\circ}, y_{\circ}))$. That is,

$$u(x_{\circ}, y_{\circ}) = \frac{1}{2\pi R} \oint_{\partial B_R((x_{\circ}, y_{\circ}))} u(x(s), y(s)) \, ds = \frac{1}{2\pi} \int_0^{2\pi} u(x_{\circ} + R\cos\theta, y_{\circ} + R\sin\theta) \, d\theta.$$

Show that $u(x_{\circ}, y_{\circ})$ is also equal to the average of u in $B_R((x_{\circ}, y_{\circ}))$, that is,

$$u(x_{\circ}, y_{\circ}) = \frac{1}{\pi R^2} \int_{B_R((x_{\circ}, y_{\circ}))} u(x, y) \, dx \, dy.$$

SOL:

Let us use polar coordinates to compute

$$\frac{1}{\pi R^2} \int_{B_R((x_o, y_o))} u(x, y) \, dx \, dy = \frac{1}{\pi R^2} \int_0^R \int_0^{2\pi} u(x_o + r\cos\theta, y_o + r\sin\theta) r \, d\theta \, dr$$

$$= \frac{1}{\pi R^2} \int_0^R r\left(\int_0^{2\pi} u(x_o + r\cos\theta, y_o + r\sin\theta) \, d\theta\right) dr$$

$$= \frac{1}{\pi R^2} \int_0^R 2\pi r u(x_o, y_o) \, dr$$

$$= u(x_o, y_o) \frac{1}{\pi R^2} [\pi r^2]_0^R$$

$$= u(x_o, y_o).$$

We have used here the boundary mean value principle in the balls $B_r((x_o, y_o))$ for each $r \in (0, R)$.

10.3. Maximum principle Consider the disk $D := \{(x, y) \in \mathbb{R}^2 : \sqrt{x^2 + y^2} < 1\}$. Let u = u(x, y) be a function twice differentiable in D and continuous in \overline{D} , solving

$$\begin{cases} \Delta u(x,y) = 0, & \text{ in } D, \\ u(x,y) = g(x,y), & \text{ on } \partial D, \end{cases}$$

for some given function g.

(a) Suppose $g(x, y) = x^2 + \frac{2}{\sqrt{2}}y$. Compute u(0, 0) and $\max_{(x,y)\in \bar{D}} u(x, y)$.

(b) Suppose now that g is any smooth function such that $g(x, y) \ge (3x - y)$. Show that $u(1/3, 0) \ge 1$, with equality if and only if g(x, y) = 3x - y.

Hint: the function 3x - y *is harmonic.*

SOL:

January 1, 2024

2/7

(a) By the mean value property

$$u(0,0) = \frac{1}{2\pi} \int_{\partial D} g \, dl = \frac{1}{2\pi} \int_0^{2\pi} \cos(\theta)^2 + \frac{2}{\sqrt{2}} \sin(\theta) \, d\theta = \frac{\pi}{2\pi} = \frac{1}{2}.$$

By the Maximum Principle

$$\max_{\overline{D}} u = \max_{\partial D} u = \max_{\partial D} g = \max_{\theta \in [0, 2\pi)} \{ \cos(\theta)^2 + \frac{2}{\sqrt{2}} \sin(\theta) \}.$$

Setting $g(\theta) = \cos^2(\theta) + \frac{2}{\sqrt{2}}\sin(\theta)$, we have that (up to periodicity)

$$g'(\theta) = \cos(\theta)(\frac{2}{\sqrt{2}} - 2\sin(\theta)) = 0,$$

if and only if $\theta \in \{\frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{4}, \frac{3\pi}{4}\}$. A quick check shows that $\max_{\theta} g(\theta) = g(\pi/4) = \frac{3}{2}$. (b) It is convenient to set the auxiliary function w := u - 3x + y. Then

$$\begin{cases} \Delta w = 0, & \text{in } D\\ w = g - (3x - y) \ge 0, & \text{on } \partial D, \end{cases}$$

by the very assumption on g. Applying the Maximum Principle to w, we get that

$$\min_{\bar{D}}(u - (3x - y)) = \min_{\bar{D}} w = \min_{\partial D} w \ge 0,$$

implying that $u(x, y) \ge 3x - y$ in \overline{D} . In particular,

$$u(1/3,0) \ge 3 \cdot \frac{1}{3} = 1.$$

If u(1/3, 0) = 1, then w attains its minimum in D since w(1/3, 0) = u(1/3, 0) - 1 = 0. This implies by the strong maximum principle that $w \equiv 0$, and hence u(x, y) = 3x - y. In particular, g(x, y) = u(x, y) = 3x - y on ∂D . This shows the 'only if' direction.

The 'if' direction is a consequence of uniqueness of solution of the Laplace equations with Dirichlet boundary condition on w. More precisely, if g = 3x - y, then this solves the boundary condition and it is itself harmonic in the D. Since solutions of Laplace's eqn. are uniquely determined by their boundary conditions, we must have that g = 3x - y being the unique solution and we see that u(1/3, 0) = 1.

January 1, 2024

10.4. Multiple choice Cross the correct answer(s).

(a) Consider the Neumann problem for the Poisson equation

$$\begin{cases} \Delta u = \rho, & \text{in } D, \\ \partial_{\nu} u = g, & \text{on } \partial D, \end{cases}$$

where D = B(0, R) is the ball of radius R > 0 with centre in the origin of \mathbb{R}^2 , and ρ and g are given in polar coordinates (r, θ) by

$$\rho(r,\theta) = r^{\alpha} \sin^2(\theta)$$
, and $g(r,\theta) = C \cos^2(\theta) + r^{2021} \sin(\theta)$,

for some constants $\alpha > 0$ and C > 0. For which values of C > 0 does the problem satisfy the Neumann's *necessary* condition for existence of solutions?

X
$$C = \frac{R^{\alpha+1}}{\alpha+2}$$
 $\bigcirc C = \frac{R^{\alpha+2}}{\alpha+2}$
 $\bigcirc C = \frac{R^{\alpha+1}}{\alpha+1}$ $\bigcirc C = \frac{R^{\alpha+1}}{\alpha-1}$

SOL: We say that the Neumann Problem for the Poisson equation satisfies the necessary condition for existence of solutions if the identity

$$\int_{\partial D} g = \int_{D} \rho, \tag{1}$$

holds. In our particular case we can compute in polar coordinates

$$\int_D \rho = \int_0^R r \int_0^{2\pi} r^\alpha \sin^2(\theta) \, d\theta \, dr = \pi \frac{R^{\alpha+2}}{\alpha+2}$$

and parametrizing ∂D with the curve $\theta \mapsto (R\cos(\theta), R\sin(\theta))$ we have that

$$\int_{\partial D} g = \int_0^{2\pi} R \left(C \cos^2(\theta) + R^{2021} \sin(\theta) \right) d\theta = RC\pi.$$

Plugging this in Equation (1) we obtain that the identity

$$RC\pi = \pi \frac{R^{\alpha+2}}{\alpha+2},$$

is valid if and only if $C = \frac{R^{\alpha+1}}{\alpha+2}$.

(b) Consider the Dirichlet problem

$$\begin{cases} \Delta u = 0, & \text{ in } D, \\ u = \frac{x}{x^2 + y^2} & \text{ on } \partial D, \end{cases}$$

where the domain D is the anulus defined by $D := \left\{ (x, y) \in \mathbb{R}^2 : 1 < \sqrt{x^2 + y^2} < 2 \right\}$. What is the maximum of u?

January 1, 2024

4/7

D-MATH	Analysis 3	ETH Zürich
Prof. M. Iacobelli	Serie 10, Solutions	HS 2023

$\bigcirc \frac{1}{2}$	$\bigcirc \frac{1}{4}$
X 1	$\bigcirc -1$

SOL: By the weak maximum principle, $\max_{\bar{D}} u = \max_{\partial D} u = \max_{\partial D} \frac{x}{x^2+y^2}$. Writing $\partial D = \{x^2+y^2=1\} \cup \{x^2+y^2=4\} =: S^1 \cup S^2$, we check that $\max_{S^1} u = \max_{S^1} x = 1$, and $\max_{S^2} u = \max_{S^2} \frac{x}{4} = \frac{1}{2}$. Hence $\max_{\partial D} u = \max\{1, \frac{1}{2}\} = 1$.

Extra exercises

10.5. Weak maximum principle Let B_1 denote the unit ball in \mathbb{R}^2 centered at the origin, and let u = u(x, y) be twice differentiable in B_1 and continuous in $\overline{B_1}$. Suppose that u solves the Dirichlet problem

$$\begin{cases} \Delta u(x,y) = -1, & \text{for } (x,y) \in B_1, \\ u(x,y) = g(x,y), & \text{for } (x,y) \in \partial B_1. \end{cases}$$

Show that

$$\max_{\bar{B}_1} u \le \frac{1}{2} + \max_{\partial B_1} g.$$

Hint: search for a simple function w such that $\Delta w = 1$, and use it to reduce the problem to an application of the weak maximum principle for harmonic functions.

SOL:

We just need to find a function w(x, y) such that $\Delta w(x, y) = 1$, and then consider v(x, y) = u(x, y) + w(x, y). The simplest function such that $\Delta w(x, y) = 1$ is $w(x, y) = \frac{1}{2}x^2$. Thus, let us define

$$v(x,y) = u(x,y) + \frac{1}{2}x^2.$$

Then, v solves

$$\begin{cases} \Delta v(x,y) = 0, & \text{for } (x,y) \in B_1, \\ v(x,y) = g(x,y) + \frac{1}{2}x^2, & \text{for } (x,y) \in \partial B_1. \end{cases}$$

By the weak maximum principle, we know that

$$\max_{\bar{B}_1} v(x,y) = \max_{\partial B_1} \left(g(x,y) + \frac{1}{2}x^2 \right) \le \max_{\partial B_1} g(x,y) + \max_{\partial B_1} \frac{1}{2}x^2.$$

Notice that $\max_{\partial B_1} \frac{1}{2}x^2 = \frac{1}{2}$, so

$$\max_{\bar{B}_1} v(x,y) \le \frac{1}{2} + \max_{\partial B_1} g(x,y).$$

January 1, 2024

On the other hand, $v(x, y) \ge u(x, y)$ for all $x, y \in B_1$, so

$$\max_{\bar{B}_1} u(x,y) \le \max_{\bar{B}_1} v(x,y) \le \frac{1}{2} + \max_{\partial B_1} g(x,y),$$

as we wanted to see.

10.6. The mean-value principle II (*Hard*) Let u be an harmonic function in \mathbb{R}^2 , $\Delta u = 0$ in \mathbb{R}^2 . Use the result in Exercise 10.2 to show that for any smooth, radial, compactly-supported $\varphi : \mathbb{R}^2 \to \mathbb{R}$ with $\int_{\mathbb{R}^2} \varphi(x, y) \, dx \, dy = 1$, we have

$$u(x_{\circ}, y_{\circ}) = \int_{\mathbb{R}^2} u(x, y)\varphi(x_{\circ} - x, y_{\circ} - y) \, dx \, dy.$$

(Harder) Use the above to show that u must be infinitely differentiable.

SOL:

Due to radial symmetry, we can write $\varphi(x, y) = \varphi(R)$ in polar coordinates. Now the condition on φ translates to

$$\int_0^\infty \varphi(R) R \, dR = 1 \, .$$

Now we have

$$\int_{\mathbb{R}^2} u(x,y)\varphi(x_\circ - x, y_\circ - y) \, dxdy = \int_{\mathbb{R}^2} u(x_\circ + x, y_\circ + y)\varphi(-x, -y) \, dxdy$$
$$= \int_0^\infty \int_0^{2\pi} u(x_\circ + R\cos\theta, y_\circ + R\sin\theta)\varphi(R) \, d\theta R dR$$
$$= \int_0^\infty \varphi(R)R \int_0^{2\pi} u(x_\circ + R\cos\theta, y_\circ + R\sin\theta) \, d\theta dR$$
$$= \int_0^\infty \varphi(R)Ru(x_\circ, y_\circ) \, dR = u(x_\circ, y_\circ) \, .$$

We used a change of variable and radial symmetry of φ in the first line and the mean value principle of Exercise 10.2 in the fourth line.

To show that u is infinitely-differentiable, let us suppose that u is just C^k for some $2 \leq k \in \mathbb{N}$. So $\partial_x^{\alpha} \partial_y^{\beta} u$ exists and is continuous for $\alpha + \beta \leq k$. So, by the above we have

$$\partial_x^{\alpha} \partial_y^{\beta} u(x_{\circ}, y_{\circ}) = \partial_x^{\alpha} \partial_y^{\beta} \int_{\mathbb{R}^2} u(x, y) \varphi(x_{\circ} - x, y_{\circ} - y) \, dx \, dy$$
$$= \int_{\mathbb{R}^2} \partial_x^{\alpha} \partial_y^{\beta} u(x, y) \varphi(x_{\circ} - x, y_{\circ} - y) \, dx \, dy$$
$$= (-1)^{\alpha + \beta} \int_{\mathbb{R}^2} u(x, y) \partial_x^{\alpha} \partial_y^{\beta} \varphi(x_{\circ} - x, y_{\circ} - y) \, dx \, dy$$

January 1, 2024

6/7

D-MATH	Analysis 3	ETH Zürich
Prof. M. Iacobelli	Serie 10, Solutions	HS 2023

where in the third line we integrated by parts (here, we used that φ is compactlysupported to make sure the integrals are finite). But now we see that

$$(-1)^{\alpha+\beta} \int_{\mathbb{R}^2} \partial_x u(x,y) \partial_x^{\alpha} \partial_y^{\beta} \varphi(x_{\circ} - x, y_{\circ} - y) \, dx \, dy$$

is a well-defined expression for $\partial_x \partial_x^{\alpha} \partial_y^{\beta} u$ and satisfies the usual limit definition of taking a derivative. Similarly for ∂_y . Thus, we see that $u \in C^{k+1}$. But this contradicts that u is just C^k . Thus, u must be infinitely-differentiable.