10.1. Unique solution

Let $k>0$. Let D be a bounded planar domain in \mathbb{R}^{2}. Let $u=u(x, y)$ be a solution to the Dirichlet problem for the reduced Helmholtz energy in D. That is, let u solve

$$
\left\{\begin{aligned}
\Delta u(x, y)-k u(x, y) & =0, & & \text { for }(x, y) \in D \\
u(x, y) & =g(x, y), & & \text { for }(x, y) \in \partial D .
\end{aligned}\right.
$$

Show that there exists at most a unique solution twice differentiable in D and continuous in \bar{D}, that is, $u \in C^{2}(D) \cap C(\bar{D})$.

Hint: Assume that there exist two solutions u_{1} and u_{2}, and consider the difference $v=u_{1}-u_{2}$.

SOL:
Let us use the hint. Let us suppose that there exist two solutions u_{1} and u_{2} fulfilling the Dirichlet problem. Let $v=u_{1}-u_{2}$. Notice that $v=v(x, y)$ solves

$$
\left\{\begin{aligned}
\Delta v(x, y)-k v(x, y)=0, & \text { for }(x, y) \in D \\
v(x, y)=0, & \text { for }(x, y) \in \partial D
\end{aligned}\right.
$$

We just need to prove that $v \equiv 0$ in D. To do so, we will show that $\max _{\bar{D}} v=$ $\min _{\bar{D}} v=0$. We show both equalities by contradiction.

Notice that $\max _{\bar{D}} v \geq 0$, since $v=0$ on ∂D. Let us suppose that $\max _{\bar{D}} v=M>0$. In particular, there exists some $\left(x_{\circ}, y_{\circ}\right) \in D$ such that $v\left(x_{\circ}, y_{\circ}\right)=M>0$, that is, v has a maximum at $\left(x_{\circ}, y_{\circ}\right)$. In particular, we know that $\Delta v\left(x_{\circ}, y_{\circ}\right) \leq 0$. Therefore,

$$
0=\Delta v\left(x_{\circ}, y_{\circ}\right)-k v\left(x_{\circ}, y_{\circ}\right) \leq-k M<0,
$$

a contradiction.
On the other hand, $\min _{\bar{D}} v \leq 0$, since $v=0$ on ∂D. Let us suppose that $\min _{\bar{D}} v=$ $m<0$. In particular, there exists some $\left(x_{\circ}, y_{\circ}\right) \in D$ such that $v\left(x_{\circ}, y_{\circ}\right)=m<0$, that is, v has a minimum at $\left(x_{\circ}, y_{\circ}\right)$. In particular, we know that $\Delta v\left(x_{\circ}, y_{\circ}\right) \geq 0$. Therefore,

$$
0=\Delta v\left(x_{\circ}, y_{\circ}\right)-k v\left(x_{\circ}, y_{\circ}\right) \geq-k m>0,
$$

a contradiction. Therefore, if there exists a solution, is unique.
10.2. The mean-value principle Let D be a planar domain, and let $B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)$ (ball of radius R centered at $\left(x_{\circ}, y_{\circ}\right)$) be fully contained in D. Let u be an harmonic
function in $D, \Delta u=0$ in D. Then, the mean-value principle says that the value of u at $\left(x_{\circ}, y_{\circ}\right)$ is the average value of u on $\partial B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)$. That is,
$u\left(x_{\circ}, y_{\circ}\right)=\frac{1}{2 \pi R} \oint_{\partial B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)} u(x(s), y(s)) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x_{\circ}+R \cos \theta, y_{\circ}+R \sin \theta\right) d \theta$.
Show that $u\left(x_{\circ}, y_{\circ}\right)$ is also equal to the average of u in $B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)$, that is,

$$
u\left(x_{\circ}, y_{\circ}\right)=\frac{1}{\pi R^{2}} \int_{B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)} u(x, y) d x d y
$$

SOL:

Let us use polar coordinates to compute

$$
\begin{aligned}
\frac{1}{\pi R^{2}} \int_{B_{R}\left(\left(x_{\circ}, y_{\circ}\right)\right)} u(x, y) d x d y & =\frac{1}{\pi R^{2}} \int_{0}^{R} \int_{0}^{2 \pi} u\left(x_{\circ}+r \cos \theta, y_{\circ}+r \sin \theta\right) r d \theta d r \\
& =\frac{1}{\pi R^{2}} \int_{0}^{R} r\left(\int_{0}^{2 \pi} u\left(x_{\circ}+r \cos \theta, y_{\circ}+r \sin \theta\right) d \theta\right) d r \\
& =\frac{1}{\pi R^{2}} \int_{0}^{R} 2 \pi r u\left(x_{\circ}, y_{\circ}\right) d r \\
& =u\left(x_{\circ}, y_{\circ}\right) \frac{1}{\pi R^{2}}\left[\pi r^{2}\right]_{0}^{R} \\
& =u\left(x_{\circ}, y_{\circ}\right) .
\end{aligned}
$$

We have used here the boundary mean value principle in the balls $B_{r}\left(\left(x_{\circ}, y_{\circ}\right)\right)$ for each $r \in(0, R)$.
10.3. Maximum principle Consider the disk $D:=\left\{(x, y) \in \mathbb{R}^{2}: \sqrt{x^{2}+y^{2}}<1\right\}$. Let $u=u(x, y)$ be a function twice differentiable in D and continuous in \bar{D}, solving

$$
\begin{cases}\Delta u(x, y)=0, & \text { in } D \\ u(x, y)=g(x, y), & \text { on } \partial D\end{cases}
$$

for some given function g.
(a) Suppose $g(x, y)=x^{2}+\frac{2}{\sqrt{2}} y$. Compute $u(0,0)$ and $\max _{(x, y) \in \bar{D}} u(x, y)$.
(b) Suppose now that g is any smooth function such that $g(x, y) \geq(3 x-y)$. Show that $u(1 / 3,0) \geq 1$, with equality if and only if $g(x, y)=3 x-y$.

Hint: the function $3 x-y$ is harmonic.

SOL:

(a) By the mean value property

$$
u(0,0)=\frac{1}{2 \pi} \int_{\partial D} g d l=\frac{1}{2 \pi} \int_{0}^{2 \pi} \cos (\theta)^{2}+\frac{2}{\sqrt{2}} \sin (\theta) d \theta=\frac{\pi}{2 \pi}=\frac{1}{2} .
$$

By the Maximum Principle

$$
\max _{\bar{D}} u=\max _{\partial D} u=\max _{\partial D} g=\max _{\theta \in[0,2 \pi)}\left\{\cos (\theta)^{2}+\frac{2}{\sqrt{2}} \sin (\theta)\right\}
$$

Setting $g(\theta)=\cos ^{2}(\theta)+\frac{2}{\sqrt{2}} \sin (\theta)$, we have that (up to periodicity)

$$
g^{\prime}(\theta)=\cos (\theta)\left(\frac{2}{\sqrt{2}}-2 \sin (\theta)\right)=0
$$

if and only if $\theta \in\left\{\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{\pi}{4}, \frac{3 \pi}{4}\right\}$. A quick check shows that $\max _{\theta} g(\theta)=g(\pi / 4)=\frac{3}{2}$.
(b) It is convenient to set the auxiliary function $w:=u-3 x+y$. Then

$$
\begin{cases}\Delta w=0, & \text { in } D \\ w=g-(3 x-y) \geq 0, & \text { on } \partial D\end{cases}
$$

by the very assumption on g. Applying the Maximum Principle to w, we get that

$$
\min _{\bar{D}}(u-(3 x-y))=\min _{\bar{D}} w=\min _{\partial D} w \geq 0
$$

implying that $u(x, y) \geq 3 x-y$ in \bar{D}. In particular,

$$
u(1 / 3,0) \geq 3 \cdot \frac{1}{3}=1
$$

If $u(1 / 3,0)=1$, then w attains its minimum in D since $w(1 / 3,0)=u(1 / 3,0)-1=0$. This implies by the strong maximum principle that $w \equiv 0$, and hence $u(x, y)=3 x-y$. In particular, $g(x, y)=u(x, y)=3 x-y$ on ∂D. This shows the 'only if' direction.

The 'if' direction is a consequence of uniqueness of solution of the Laplace equations with Dirichlet boundary condition on w. More precisely, if $g=3 x-y$, then this solves the boundary condition and it is itself harmonic in the D. Since solutions of Laplace's eqn. are uniquely determined by their boundary conditions, we must have that $g=3 x-y$ being the unique solution and we see that $u(1 / 3,0)=1$.
10.4. Multiple choice Cross the correct answer(s).
(a) Consider the Neumann problem for the Poisson equation

$$
\begin{cases}\Delta u=\rho, & \text { in } D \\ \partial_{\nu} u=g, & \text { on } \partial D\end{cases}
$$

where $D=B(0, R)$ is the ball of radius $R>0$ with centre in the origin of \mathbb{R}^{2}, and ρ and g are given in polar coordinates (r, θ) by

$$
\rho(r, \theta)=r^{\alpha} \sin ^{2}(\theta), \text { and } g(r, \theta)=C \cos ^{2}(\theta)+r^{2021} \sin (\theta),
$$

for some constants $\alpha>0$ and $C>0$. For which values of $C>0$ does the problem satisfy the Neumann's necessary condition for existence of solutions?
X $C=\frac{R^{\alpha+1}}{\alpha+2}$
$C=\frac{R^{\alpha+2}}{\alpha+2}$
$\bigcirc C=\frac{R^{\alpha+1}}{\alpha+1}$
$C=\frac{R^{\alpha+1}}{\alpha-1}$

SOL: We say that the Neumann Problem for the Poisson equation satisfies the necessary condition for existence of solutions if the identity

$$
\begin{equation*}
\int_{\partial D} g=\int_{D} \rho \tag{1}
\end{equation*}
$$

holds. In our particular case we can compute in polar coordinates

$$
\int_{D} \rho=\int_{0}^{R} r \int_{0}^{2 \pi} r^{\alpha} \sin ^{2}(\theta) d \theta d r=\pi \frac{R^{\alpha+2}}{\alpha+2},
$$

and parametrizing ∂D with the curve $\theta \mapsto(R \cos (\theta), R \sin (\theta))$ we have that

$$
\int_{\partial D} g=\int_{0}^{2 \pi} R\left(C \cos ^{2}(\theta)+R^{2021} \sin (\theta)\right) d \theta=R C \pi .
$$

Plugging this in Equation (1) we obtain that the identity

$$
R C \pi=\pi \frac{R^{\alpha+2}}{\alpha+2}
$$

is valid if and only if $C=\frac{R^{\alpha+1}}{\alpha+2}$.
(b) Consider the Dirichlet problem

$$
\begin{cases}\Delta u=0, & \text { in } D, \\ u=\frac{x}{x^{2}+y^{2}} & \text { on } \partial D,\end{cases}
$$

where the domain D is the anulus defined by $D:=\left\{(x, y) \in \mathbb{R}^{2}: 1<\sqrt{x^{2}+y^{2}}<2\right\}$. What is the maximum of u ?○ $\frac{1}{4}$
X 1
○ -1

SOL: By the weak maximum principle, $\max _{\bar{D}} u=\max _{\partial D} u=\max _{\partial D} \frac{x}{x^{2}+y^{2}}$. Writing $\partial D=\left\{x^{2}+y^{2}=1\right\} \cup\left\{x^{2}+y^{2}=4\right\}=: S^{1} \cup S^{2}$, we check that $\max _{S^{1}} u=\max _{S^{1}} x=1$, and $\max _{S^{2}} u=\max _{S^{2}} \frac{x}{4}=\frac{1}{2}$. Hence $\max _{\partial D} u=\max \left\{1, \frac{1}{2}\right\}=1$.

Extra exercises

10.5. Weak maximum principle Let B_{1} denote the unit ball in \mathbb{R}^{2} centered at the origin, and let $u=u(x, y)$ be twice differentiable in B_{1} and continuous in $\overline{B_{1}}$. Suppose that u solves the Dirichlet problem

$$
\left\{\begin{aligned}
\Delta u(x, y) & =-1, & & \text { for }(x, y) \in B_{1} \\
u(x, y) & =g(x, y), & & \text { for }(x, y) \in \partial B_{1} .
\end{aligned}\right.
$$

Show that

$$
\max _{\overline{B_{1}}} u \leq \frac{1}{2}+\max _{\partial B_{1}} g .
$$

Hint: search for a simple function w such that $\Delta w=1$, and use it to reduce the problem to an application of the weak maximum principle for harmonic functions.

SOL:

We just need to find a function $w(x, y)$ such that $\Delta w(x, y)=1$, and then consider $v(x, y)=u(x, y)+w(x, y)$. The simplest function such that $\Delta w(x, y)=1$ is $w(x, y)=$ $\frac{1}{2} x^{2}$. Thus, let us define

$$
v(x, y)=u(x, y)+\frac{1}{2} x^{2}
$$

Then, v solves

$$
\left\{\begin{aligned}
\Delta v(x, y) & =0, & & \text { for }(x, y) \in B_{1} \\
v(x, y) & =g(x, y)+\frac{1}{2} x^{2}, & & \text { for }(x, y) \in \partial B_{1} .
\end{aligned}\right.
$$

By the weak maximum principle, we know that

$$
\max _{\bar{B}_{1}} v(x, y)=\max _{\partial B_{1}}\left(g(x, y)+\frac{1}{2} x^{2}\right) \leq \max _{\partial B_{1}} g(x, y)+\max _{\partial B_{1}} \frac{1}{2} x^{2} .
$$

Notice that $\max _{\partial B_{1}} \frac{1}{2} x^{2}=\frac{1}{2}$, so

$$
\max _{\bar{B}_{1}} v(x, y) \leq \frac{1}{2}+\max _{\partial B_{1}} g(x, y)
$$

On the other hand, $v(x, y) \geq u(x, y)$ for all $x, y \in B_{1}$, so

$$
\max _{\bar{B}_{1}} u(x, y) \leq \max _{\bar{B}_{1}} v(x, y) \leq \frac{1}{2}+\max _{\partial B_{1}} g(x, y)
$$

as we wanted to see.
10.6. The mean-value principle II (Hard) Let u be an harmonic function in \mathbb{R}^{2}, $\Delta u=0$ in \mathbb{R}^{2}. Use the result in Exercise 10.2 to show that for any smooth, radial, compactly-supported $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with $\int_{\mathbb{R}^{2}} \varphi(x, y) d x d y=1$, we have

$$
u\left(x_{\circ}, y_{\circ}\right)=\int_{\mathbb{R}^{2}} u(x, y) \varphi\left(x_{\circ}-x, y_{\circ}-y\right) d x d y
$$

(Harder) Use the above to show that u must be infinitely differentiable.

SOL:

Due to radial symmetry, we can write $\varphi(x, y)=\varphi(R)$ in polar coordinates. Now the condition on φ translates to

$$
\int_{0}^{\infty} \varphi(R) R d R=1
$$

Now we have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} u(x, y) \varphi\left(x_{\circ}-x, y_{\circ}-y\right) d x d y & =\int_{\mathbb{R}^{2}} u\left(x_{\circ}+x, y_{\circ}+y\right) \varphi(-x,-y) d x d y \\
& =\int_{0}^{\infty} \int_{0}^{2 \pi} u\left(x_{\circ}+R \cos \theta, y_{\circ}+R \sin \theta\right) \varphi(R) d \theta R d R \\
& =\int_{0}^{\infty} \varphi(R) R \int_{0}^{2 \pi} u\left(x_{\circ}+R \cos \theta, y_{\circ}+R \sin \theta\right) d \theta d R \\
& =\int_{0}^{\infty} \varphi(R) R u\left(x_{\circ}, y_{\circ}\right) d R=u\left(x_{\circ}, y_{\circ}\right) .
\end{aligned}
$$

We used a change of variable and radial symmetry of φ in the first line and the mean value priniciple of Exercise 10.2 in the fourth line.

To show that u is infinitely-differentiable, let us suppose that u is just C^{k} for some $2 \leq k \in \mathbb{N}$. So $\partial_{x}^{\alpha} \partial_{y}^{\beta} u$ exists and is continuous for $\alpha+\beta \leq k$. So, by the above we have

$$
\begin{aligned}
\partial_{x}^{\alpha} \partial_{y}^{\beta} u\left(x_{\circ}, y_{\circ}\right) & =\partial_{x}^{\alpha} \partial_{y}^{\beta} \int_{\mathbb{R}^{2}} u(x, y) \varphi\left(x_{\circ}-x, y_{\circ}-y\right) d x d y \\
& =\int_{\mathbb{R}^{2}} \partial_{x}^{\alpha} \partial_{y}^{\beta} u(x, y) \varphi\left(x_{\circ}-x, y_{\circ}-y\right) d x d y \\
& =(-1)^{\alpha+\beta} \int_{\mathbb{R}^{2}} u(x, y) \partial_{x}^{\alpha} \partial_{y}^{\beta} \varphi\left(x_{\circ}-x, y_{\circ}-y\right) d x d y
\end{aligned}
$$

where in the third line we integrated by parts (here, we used that φ is compactlysupported to make sure the integrals are finite). But now we see that

$$
(-1)^{\alpha+\beta} \int_{\mathbb{R}^{2}} \partial_{x} u(x, y) \partial_{x}^{\alpha} \partial_{y}^{\beta} \varphi\left(x_{\circ}-x, y_{\circ}-y\right) d x d y
$$

is a well-defined expression for $\partial_{x} \partial_{x}^{\alpha} \partial_{y}^{\beta} u$ and satisfies the usual limit definition of taking a derivative. Similarly for ∂_{y}. Thus, we see that $u \in C^{k+1}$. But this contradicts that u is just C^{k}. Thus, u must be infinitely-differentiable.

