11.1. Separation of variables for elliptic equations

(a) Find a solution to

$$
\begin{cases}\Delta u=0, & (x, y) \in[0, \pi]^{2} \\ u(x, 0)=u(x, \pi)=0, & x \in[0, \pi] \\ u(0, y)=0, & y \in[0, \pi] \\ u(\pi, y)=\sin (2 y), & y \in[0, \pi]\end{cases}
$$

(b) Find a solution to

$$
\begin{cases}\Delta u=\sin (x)+\sin (3 y), & (x, y) \in[\pi, 2 \pi]^{2} \\ u(x, \pi)=0, & x \in[\pi, 2 \pi] \\ u(x, 2 \pi)=-\sin (x), & x \in[\pi, 2 \pi] \\ u(\pi, y)=0, & y \in[\pi, 2 \pi] \\ u(2 \pi, y)=-\sin (3 y) / 9, & y \in[\pi, 2 \pi]\end{cases}
$$

Hint: find a simple function $f(x, y)$ such that $v:=u+f$ is harmonic. Then, solve for v.

SOL:

(a) We are looking for an harmonic function u such that

$$
u(0, y)=0, u(\pi, y)=\sin (2 y), u(x, 0)=u(x, \pi)=0
$$

(Notice that since the solution at $(x, 0)$ and (x, π) is already 0 , we do not need to split it into two functions, and we can directly work with u. Compare with Example 7.21 in Pinchover's.)

We use separation of variables, and we assume that u can be expressed as sum of harmonic functions $w(x, y)=X(x) Y(y)$. Imposing that w is harmonic we reach that

$$
Y^{\prime \prime}(y)+\lambda Y(y)=0
$$

and $Y(0)=Y(\pi)=0$. On the other hand, we also reach

$$
X^{\prime \prime}(x)-\lambda X(x)=0
$$

The problem for Y is already standard, and we have as eigenvalues $\lambda_{n}=n^{2}$ and as eigenfucntions $Y_{n}(y)=\sin (n y)$, for $n=1,2, \ldots$. Thus, the equation for X becomes simply

$$
X_{n}^{\prime \prime}(x)-n^{2} X_{n}(x)=0
$$

Solutions to the previous problem are of the form $X_{n}(x)=\alpha_{n} \sinh (n x)+\beta_{n} \cosh (n x)$. However, such basis (in terms of $\sinh (n x)$ and $\cosh (n x))$ is not very useful when dealing with boundary behaviour for this problem at $x=0, \pi$. Thus, we choose instead the basis $\sinh (n x)$ and $\sinh (n x-n \pi)$. Let us now show why we can express the solution in that basis. That is, we want to write

$$
X_{n}(x)=\gamma_{n} \sinh (n x)+\delta_{n} \sinh (n(x-\pi)),
$$

and find the coefficients γ_{n} and δ_{n} in terms of α_{n} and β_{n}. To do that, we use that $\sinh (x+y)=\sinh (x) \cosh (y)+\cosh (x) \sinh (y)$, that sinh is odd and cosh is even. Therefore,

$$
\sinh (n(x-\pi))=\sinh (n x) \cosh (n \pi)-\cosh (n x) \sinh (n \pi),
$$

and

$$
X_{n}(x)=\left(\gamma_{n}+\delta_{n} \cosh (n \pi)\right) \sinh (n x)-\delta_{n} \sinh (n \pi) \cosh (n x)
$$

and we get that $\beta_{n}=-\delta_{n} \sinh (n \pi)$ and $\alpha_{n}=\gamma_{n}+\delta_{n} \cosh (n \pi)$. That is, $\delta_{n}=$ $-\beta_{n} / \sinh (n \pi)$ and $\gamma_{n}=\alpha_{n}-\delta_{n} \cosh (n \pi)$; and both bases are interchangeable.
Thus, let us express the solution $u(x, y)$ as

$$
u(x, y)=\sum_{n \geq 1} \sin (n y)\left(\delta_{n} \sinh (n x)+\gamma_{n} \sinh (n(x-\pi))\right)
$$

Now, since $u(0, y)=0$, we deduce that $\gamma_{n}=0$. On the other hand, since $u(\pi, y)=$ $\sin (2 y)$,

$$
u(\pi, y)=\sum_{n \geq 1} \delta_{n} \sin (n y) \sinh (n \pi)=\sin (2 y)
$$

we deduce that $\delta_{2}=\frac{1}{\sinh (2 \pi)}$, and $\delta_{n}=0$ for $n \neq 2$. Thus, our solution is going to be

$$
u(x, y)=\sin (2 y) \frac{\sinh (x)}{\sinh (2 \pi)}
$$

(b) Since $\sin ^{\prime \prime}=-$ sin, we can easily check that

$$
0=\Delta u-\sin (x)-\sin (3 y)=\Delta\left(u+\sin (x)+\frac{\sin (3 y)}{9}\right)
$$

Hence, setting $v(x, y):=u(x, y)+\sin (x)+\frac{\sin (3 y)}{9}$ we obtain that v is an harmonic function solving

$$
\left\{\begin{aligned}
\Delta v & =0, & & \text { for } \pi<x<2 \pi, \pi<y<2 \pi \\
v(x, \pi) & =\sin (x), & & \text { for } \pi \leq x \leq 2 \pi \\
v(x, 2 \pi) & =0, & & \text { for } \pi \leq x \leq 2 \pi \\
v(\pi, y) & =\frac{\sin (3 y)}{9}, & & \text { for } \pi \leq y \leq 2 \pi \\
v(2 \pi, y) & =0, & & \text { for } \pi \leq y \leq 2 \pi
\end{aligned}\right.
$$

We factorize then $v=v_{1}+v_{2}$ where

$$
\left\{\begin{aligned}
\Delta v_{1} & =0, & & \text { for } \pi<x<2 \pi, \pi<y<2 \pi, \\
v_{1}(x, \pi) & =0, & & \text { for } \pi \leq x \leq 2 \pi, \\
v_{1}(x, 2 \pi) & =0, & & \text { for } \pi \leq x \leq 2 \pi, \\
v_{1}(\pi, y) & =\frac{\sin (3 y)}{9}, & & \text { for } \pi \leq y \leq 2 \pi, \\
v_{1}(2 \pi, y) & =0, & & \text { for } \pi \leq y \leq 2 \pi
\end{aligned}\right.
$$

and

$$
\left\{\begin{aligned}
\Delta v_{2} & =0, & & \text { for } \pi<x<2 \pi, \pi<y<2 \pi, \\
v_{2}(x, \pi) & =\sin (x), & & \text { for } \pi \leq x \leq 2 \pi, \\
v_{2}(x, 2 \pi) & =0, & & \text { for } \pi \leq x \leq 2 \pi, \\
v_{2}(\pi, y) & =0, & & \text { for } \pi \leq y \leq 2 \pi, \\
v_{2}(2 \pi, y) & =0, & & \text { for } \pi \leq y \leq 2 \pi .
\end{aligned}\right.
$$

This corresponds to the following splitting:

Figure 1: Splitting of the Laplace equation.

After operating the classical separation of variable, we have that

$$
\begin{aligned}
& v_{1}(x, y)=\sum_{n=1}^{+\infty}\left(A_{n} \sinh (n(x-\pi))+B_{n} \sinh (n(x-2 \pi))\right) \sin (n(y-\pi)), \\
& v_{2}(x, y)=\sum_{n=1}^{+\infty}\left(C_{n} \sinh (n(y-\pi))+D_{n} \sinh (n(y-2 \pi))\right) \sin (n(x-\pi)),
\end{aligned}
$$

To determinate the coefficients, we have to take advantage of the boundary data:

$$
0=v_{1}(2 \pi, y)=\sum_{n=1}^{+\infty} A_{n} \sinh (n \pi) \sin (n(y-\pi))
$$

which implies $A_{n} \equiv 0$. On the other side,

$$
\frac{\sin (3 y)}{9}=v_{1}(\pi, y)=\sum_{n=1}^{+\infty} B_{n} \sinh (-n \pi) \sin (n(y-\pi))
$$

and since $\sin (3 y)=\sin (3(y-\pi))$ we obtain that $B_{2}=(9 \sinh (-3 \pi))^{-1}=-(9 \sinh (3 \pi))^{-1}$, and $B_{n}=0$ otherwise. Similarly, $C_{n} \equiv 0$ and combining

$$
\sin (x)=v_{2}(x, \pi)=\sum_{n=1}^{+\infty} D_{n} \sinh (-\pi n) \sin (n(x-\pi)),
$$

with the identity $\sin (x)=-\sin (x-\pi)$ we obtain that $D_{1}=(-\sinh (-\pi))^{-1}=$ $\sinh (\pi)^{-1}$, and $D_{n}=0$ otherwise. Combining everything we obtain that

$$
\begin{aligned}
u(x, y) & =v(x, y)-\sin (x)-\frac{\sin (3 y)}{9}=v_{1}(x, y)+v_{2}(x, y)-\sin (x)-\frac{\sin (3 y)}{9} \\
& =-\frac{\sinh (3(x-2 \pi))}{9 \sinh (3 \pi)} \sin (3(y-\pi))+\frac{\sinh (y-2 \pi)}{\sinh (\pi)} \sin (x-\pi)-\sin (x)-\frac{\sin (3 y)}{9} \\
& =-\left(\frac{\sinh (3(x-2 \pi))}{9 \sinh (3 \pi)}+\frac{1}{9}\right) \sin (3 y)-\left(\frac{\sinh (y-2 \pi)}{\sinh (\pi)}+1\right) \sin (x) .
\end{aligned}
$$

11.2. Heat Equation Let $u:[0,1] \times[0,+\infty) \rightarrow \mathbb{R}$ be solution of the heat equation

$$
\begin{cases}u_{y}-u_{x x}=0, & (x, t) \in(0,1) \times(0,+\infty) \\ u(x, 0)=x(1-x), & x \in[0,1] \\ u(t, 0)=u(t, 1)=0, & t \in[0,+\infty)\end{cases}
$$

Show that $0 \leq u(0.5,100) \leq 0.00001$.
Hint: notice that $w(x, t)=e^{-\pi^{2} t} \sin (\pi x)$ solves the same PDE with different initial conditions.

SOL: First, let us check that $w:=e^{-\pi^{2} t} \sin (\pi x)$ solves the equation:

$$
\partial_{t} w=-\pi^{2} w=\partial_{x x} w
$$

One can check that $\sin (\pi x) \geq x(1-x)$ in the interval $[0,1]$ (for example, you can use wolfram-alpha for checking this!). Thus, we have $w(x, 0) \geq u(x, 0)$.

Similarly, 0 solves the equation and $u(x, 0) \geq 0$.
By the comparison principle for solutions of the heat equation (which is an easy consequence of the maximum principle for parabolic equations), we deduce $0 \leq$ $u(x, t) \leq w(x, t)$ for all $x \in(0,1)$ and $t \geq 0$. In particular we find

$$
0 \leq u(0.5,100) \leq w(0.5,100)=e^{-100 \pi^{2}} \sin \left(\frac{\pi}{2}\right)=e^{-100 \pi^{2}} \ll 0.00001
$$

11.3. Uniqueness of solutions Let $D \subset \mathbb{R}^{2}$ be a planar domain and $f: \partial D \rightarrow \mathbb{R}$ a continuous function defined on its boundary. Show that the following elliptic problem

$$
\begin{cases}\Delta u=u, & \text { in } D \\ u=f, & \text { on } \partial D\end{cases}
$$

admits at most one smooth solution.
If u_{1} and u_{2} solve the same PDE, what can we say about $u_{1}-u_{2}$?
SOL: Let $u_{1}, u_{2}: \bar{D} \rightarrow \mathbb{R}$ be two solutions. Let $v:=u_{1}-u_{2}$ be the difference. Notice that v satisfies

$$
\left\{\begin{aligned}
\Delta v & =v, \\
v=0, & \text { in } D \\
v & \text { on } \partial D
\end{aligned}\right.
$$

Assume that $v>0$ somewhere in D. Let $(x, y) \in D$ be the maximum point of v. Then we have $v(x, y)>0$ and $\Delta v \leq 0$, which is a contradiction since $v=\Delta v$.
Hence, it must be $v \leq 0$. Similarly (just repeating the argument for $-v$ instead of v) we can show $v \geq 0$. Hence $v=0$ everywhere and thus $u_{1}=u_{2}$.

