3.1. Characteristic method and initial conditions Consider the equation

$$
x u_{y}-y u_{x}=0 .
$$

For each of the following initial conditions, solve the problem in $y \geq 0$ whenever it is possible. If it is not, explain why.
(a) $u(x, 0)=x^{2}$.
(b) $u(x, 0)=x$.
(c) $u(x, 0)=x$ for $x>0$.

SOL: In all three cases the initial condition is of the form $\Gamma(s)=\{s, 0, f(s)\}$ for some given function f. We can find an implicit solution via the method of characteristic solving the associated ODE system

$$
\begin{cases}\frac{d x(t, s)}{d t}=-y(t, s), & x(0, s)=s, \\ \frac{d y(t, s)}{d t}=x(t, s) & y(0, s)=0, \\ \frac{d \tilde{u}(t, s)}{d t}=0, & \tilde{u}(t, s)=f(s) .\end{cases}
$$

By Exercise 2.1 (d), we know how to solve this system (recall: by differentiating once again in t to lose the crossed dependencies), obtaining $x(s, t)=s \cos (t), y(s, t)=$ $s \sin (t)$ and $\tilde{u}(s, t)=f(s)$. It follows that $s^{2}=x(s, t)^{2}+y(s, t)^{2}$, obtaining formally

$$
u(x, y)=f\left(\pm \sqrt{x^{2}+y^{2}}\right)
$$

(a) Since in this case $f(s)=s^{2}, u(x, y)=x^{2}+y^{2}$ without ambiguity in the sign.
(b) In this case we have no solution because if we chose $u(x, y)=\sqrt{x^{2}+y^{2}}$ we have that $u(x, 0)=|x| \neq x$ for $x<0$. Similarly, if we set $u(x, y)=-\sqrt{x^{2}+y^{2}}$ then we have the exact same problem when $y=0$ and $x>0$. Geometrically, the reason of non existence is the following: notice that the characteristics curves $t \mapsto(x(t, s), y(t, s))$ are arcs of circles centered in the origin and crossing the x-axis in $(-s, 0)$ and $(s, 0)$, $s \geq 0$. The value of u along the characteristics is constant equal to $f(s)$. Hence, $f(-s)=u(-s, 0)=u(s, 0)=f(s)$, that is f has to be even for the solution to be well defined.
(c) In this case $f(s)$ is defined only when $s>0$. By the discussion of the previous point, we need to impose $u(x, 0)=-x$ for all $x<0$ to have well defined solution. Therefore we extend f by setting $f(s)=|s|$. In this case $u(x, y)=\left| \pm \sqrt{x^{2}+y^{2}}\right|=$ $\left|\sqrt{x^{2}+y^{2}}\right|$ is well defined. Notice however that u is not C^{1} at the origin, so u is a classical solution only in $\{(x, y): x \neq 0, y \geq 0\}$.
3.2. Method of characteristic, local and global existence Consider the quasilinear, first order PDE

$$
\begin{cases}u_{x}+\ln (u) u_{y}=u, & (x, y) \in \mathbb{R}^{2} \\ u(x, 0)=e^{x}, & x \in \mathbb{R}\end{cases}
$$

(here $\ln (\cdot)$ stands for the natural logarithm).
(a) Check the transversality condition.
(b) Find an explicit solution, and check if the result matches the existence condition found in the previous point.

SOL:

(a) The given PDE is of the form $a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u)$ where $a(x, y, u)=1, b(x, y, u)=\ln (u)$ and $c(x, y, u)=u$. The initial curve can be chosen equal to $\Gamma(s)=\left\{s, 0, e^{s}\right\}$. We compute the determinant

$$
\left.\operatorname{det}\left[\begin{array}{cc}
\frac{x x}{d t} & \frac{d y}{d t} \\
\frac{d x}{d s} & \frac{d y}{d s}
\end{array}\right]\right|_{t=0}=\operatorname{det}\left[\begin{array}{cc}
1 & \ln \left(e^{s}\right) \\
\frac{d}{d s} s & 0
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
1 & s \\
1 & 0
\end{array}\right]=-s .
$$

The transversality condition is ensured provided $s \neq 0$.
(b) The ODE system is

$$
\begin{cases}\frac{d x}{d t}=1, & x(0, s)=s \\ \frac{d y}{d t}=\ln (\tilde{u}), & y(0, s)=0 \\ \frac{d \tilde{u}}{d t}=\tilde{u}, & \tilde{u}(0, s)=e^{s}\end{cases}
$$

Now, $x(t, s)=t+s$ and $\tilde{u}(t, s)=e^{s} e^{t}=e^{t+s}$. Plugging the solution for \tilde{u} in the ODE for y we get $\frac{d y}{d t}=\ln \left(e^{t+s}\right)=t+s$, obtaining $y(t, s)=\frac{1}{2} t^{2}+t s$. Normally we need to invert the map

$$
\left.(s, t) \mapsto(x(t, s), y(t, s))=\left(t+s, t^{2} / 2+t s\right)\right) .
$$

But in this particular case, since $\tilde{u}(t, s)=e^{t+s}$, and $x=t+s$ we have immediately that $u(x, y)=e^{x}$. This solution is defined globally. This shows that the transversality condition is a sufficient condition for having a local solution, but tells us nothing about the possible existence of a global solution.
3.3. Multiple choice Cross the correct answer(s).
(a) Consider the first order linear PDE: $\left(x+e^{y}\right) u_{x}+u_{y}=x$. Then, the transversality condition is everywhere satisfied if
$\mathrm{X} u(0, y)=y$
$\mathrm{X} u(x, 0)=\sin (x)$
$u(x, x)=x y$
X $u\left(x^{2}, x\right)=0$

SOL: From left to right:

$$
\begin{gathered}
\Gamma(s)=\{0, s, s\}, \quad \operatorname{det}\left[\begin{array}{cc}
e^{s} & 1 \\
0 & 1
\end{array}\right]=e^{s}, \\
\Gamma(s)=\{s, 0, \sin (s)\}, \quad \operatorname{det}\left[\begin{array}{cc}
s+1 & 1 \\
1 & 0
\end{array}\right]=-1, \\
\Gamma(s)=\left\{s, s, s^{2}\right\}, \quad \operatorname{det}\left[\begin{array}{cc}
s+e^{s} & 1 \\
1 & 1
\end{array}\right]=s+e^{s}-1, \\
\Gamma(s)=\left\{s^{2}, s, 0\right\}, \quad \operatorname{det}\left[\begin{array}{cc}
s^{2}+e^{s} & 1 \\
2 s & 1
\end{array}\right]=s^{2}+e^{s}-2 s .
\end{gathered}
$$

The first two determinants are always different from zero. The third one is equal to zero when $s=0$. The last one is always strictly greater than zero, since $e^{s} \geq s+1$ implies $s^{2}+e^{s}-2 s \geq s^{2}-s+1>0$.
(b) Consider the first order quasilinear PDE: $x u_{x}+e^{u} u_{y}=0$. Then, the transversality condition is satisfied if

$$
\begin{array}{ll}
\mathrm{X} u\left(x, x^{2}\right)=\ln \left(1+x^{2}\right), x>1 & \text { O } u\left(x, x^{2}\right)=\ln \left(1+x^{2}\right), x \geq 0 \\
\text { 保 } 0, y)=y & \mathrm{X} u(x, 0)=h(x) \text { for any function } h
\end{array}
$$

SOL: From left to right:

$$
\begin{array}{cc}
\Gamma(s)=\left\{s, s^{2}, \ln \left(1+s^{2}\right)\right\}, s>1, & \operatorname{det}\left[\begin{array}{cc}
s & 1+s^{2} \\
1 & 2 s
\end{array}\right]=2 s^{2}-1-s^{2}=s^{2}-1>0, \\
\Gamma(s)=\left\{s, s^{2}, \ln \left(1+s^{2}\right)\right\}, s \geq 0, & \operatorname{det}\left[\begin{array}{cc}
s & 1+s^{2} \\
1 & 2 s
\end{array}\right]=2 s^{2}-1-s^{2}=s^{2}-1, \\
\Gamma(s)=\{0, s, s\}, & \operatorname{det}\left[\begin{array}{cc}
0 & e^{s} \\
0 & 1
\end{array}\right]=0, \\
\Gamma(s)=\{s, 0, h(s)\}, & \operatorname{det}\left[\begin{array}{cc}
s & e^{h(s)} \\
1 & 0
\end{array}\right]=-e^{h(s)}<0 .
\end{array}
$$

Notice that the second determinant is equal to zero when $s=1$.
(c) For which values of $r>0$ there exists a local solution for

$$
x u_{x}+(u+y) u_{y}=x^{3}+2,
$$

in a neighbourhood of the circle $C_{r}:=\left\{x^{2}+y^{2}=r^{2}\right\}$, so that $\left.u\right|_{C_{r}} \equiv-1$?
X $r>1$
$\bigcirc<r<1$
○r $\quad r 1$
$\bigcirc r=1$

SOL: For a fixed $r>0$ we parametrize the initial curve in polar coordinates $\Gamma(s)=$ $\{r \cos (s), r \sin (s),-1\}, s \in[0,2 \pi)$. To check local existence in a neighbourhood of $\Gamma(s)$ we compute

$$
\operatorname{det}\left[\begin{array}{cc}
r \cos (s) & -1+r \sin (s) \\
-r \sin (s) & r \cos (s)
\end{array}\right]=r^{2} \cos (s)^{2}+r \sin (s)(-1+r \sin (s))=r^{2}-r \sin (s)
$$

Notice that the above expression has always strictly positive maximum (since $r>0$), and attains its minimum when $\sin (s)=1$, so that we need to check when $r^{2}-r>0$. This is the case if and only if $r>1$.
(d) For which values of $a>0$ there exists a local solution of

$$
u u_{x}+(y+a) u_{y}=2022,
$$

in a neighbourhood of the ellipse $E_{a}:=\left\{\frac{x^{2}}{a^{2}}+y^{2}=1\right\}$, so that $\left.u\right|_{E_{a}}=x$?
$\bigcirc a=1$
X $0<a<1$
$\bigcirc a>0$
$\bigcirc a \geq 1$

SOL: The solution is similar to point (c): for a fixed parameter $a>0$ we parametrize the initial curve $\Gamma(s)=\{a \cos (s), \sin (s), a \cos (s)\}$. Then, in order to check the transversality condition we compute

$$
\operatorname{det}\left[\begin{array}{cc}
a \cos (s) & \sin (s)+a \\
-a \sin (s) & \cos (s)
\end{array}\right]=a \cos (s)^{2}+a \sin (s)^{2}+a^{2} \sin (s)=a+a^{2} \sin (s)
$$

This function in s has always strictly positive maximum (since $a>0$) and reaches its minimum when $\sin (s)=-1$, that is at the value $a-a^{2}$, which is striclty positive if and only if $0<a<1$.

Extra exercises

3.4. Characteristic method and transversality condition Consider the transport equation

$$
y u_{x}+u u_{y}=x .
$$

(a) Solve the problem with initial condition $u(s, s)=-2 s$, for $s \in \mathbb{R}$. For what domain of s does the transversality condition hold?
(b) Check the transversality condition with the initial value $u(s, s)=s$. What is occurring in this case?
(c) Define

$$
w_{1}:=x+y+u, \quad w_{2}:=x^{2}+y^{2}+u^{2}, \quad w_{3}=x y+x u+y u .
$$

Show that $w_{1}\left(w_{2}-w_{3}\right)$ is constant along the characteristic curves.

SOL:

(a) The characteristic equations and parametric initial conditions are given by

$$
\begin{array}{lll}
x_{t}(t, s)=y(t, s), & y_{t}(t, s)=\tilde{u}(t, s), & \tilde{u}_{t}(t, s)=x(t, s), \\
x(0, s)=s, & y(0, s)=s, & u(0, s)=-2 s
\end{array}
$$

Notice that, if we define $w(t, s):=x(t, s)+y(t, s)+\tilde{u}(t, s)$, then $w_{t}(t, s)=w(t, s)$ and $w(0, s)=0$. That is, $w(t, s) \equiv 0$ for all s, and therefore,

$$
u(x, y)=-x-y
$$

Regarding the transversality condition, let us check:

$$
J=\left|\begin{array}{cc}
x_{t}(0, s) & y_{t}(0, s) \\
x_{s}(0, s) & y_{s}(0, s)
\end{array}\right|=\left|\begin{array}{cc}
y(0, s) & \tilde{u}(0, s) \\
1 & 1
\end{array}\right|=\left|\begin{array}{cc}
s & -2 s \\
1 & 1
\end{array}\right|=3 s \neq 0, \quad \text { if } \quad s \neq 0 .
$$

That is, the transversality condition holds if $s \neq 0$.
(b) The characteristic equations and parametric initial conditions are given by

$$
\begin{array}{lll}
x_{t}(t, s)=y(t, s), & y_{t}(t, s)=\tilde{u}(t, s), & \tilde{u}_{t}(t, s)=x(t, s), \\
x(0, s)=s, & y(0, s)=s, & u(0, s)=s
\end{array}
$$

Regarding the transversality condition, let us check:

$$
J=\left|\begin{array}{ll}
x_{t}(0, s) & y_{t}(0, s) \\
x_{s}(0, s) & y_{s}(0, s)
\end{array}\right|=\left|\begin{array}{cc}
y(0, s) & \tilde{u}(0, s) \\
1 & 1
\end{array}\right|=\left|\begin{array}{cc}
s & s \\
1 & 1
\end{array}\right|=0
$$

The transversality condition never holds. What is occurring is that the solution to the characteristic equations is $\left(s e^{t}, s e^{t}, s e^{t}\right)$, which coincides with the initial curve. In other words, from the PDE and the initial condition, we get no information on u outside of the line $s \mapsto(s, s, s)$.

Therefore, the problem is under-determined, and it has infinitely many solutions.
(c) characteristic curves fulfill the equations

$$
x_{t}(t)=y(t), \quad y_{t}(t)=\tilde{u}(t), \quad \tilde{u}_{t}(t)=x(t)
$$

(we removed the parameter s, since we will not care about initial value conditions for this part).

In particular, if we consider w_{i} along the curves, we can take $\tilde{w}_{i}(t):=w_{i}(x(t), y(t), \tilde{u}(t))$. We want to show that $\frac{d}{d t} \tilde{w}_{1}\left(\tilde{w}_{2}-\tilde{w}_{3}\right)=0$. Indeed:

$$
\begin{aligned}
\frac{d \tilde{w}_{1}(t)}{d t} & =\tilde{w}_{1}(t) \\
\frac{d \tilde{w}_{2}(t)}{d t} & =2 x(t) u(t)+2 y(t) \tilde{u}(t)+2 x(t) y(t)=2 \tilde{w}_{3}(t), \\
\frac{d \tilde{w}_{3}(t)}{d t} & =y^{2}(t)+x(t) \tilde{u}(t)+x^{2}(t)+y(t) \tilde{u}(t)+\tilde{u}^{2}(t)+y(t) x(t) \\
& =\tilde{w}_{2}(t)+\tilde{w}_{3}(t) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
\frac{d}{d t} \tilde{w}_{1}\left(\tilde{w}_{2}-\tilde{w}_{3}\right) & =\left(\frac{d}{d t} \tilde{w}_{1}\right)\left(\tilde{w}_{2}-\tilde{w}_{3}\right)+\tilde{w}_{1}\left(\frac{d}{d t} \tilde{w}_{2}-\frac{d}{d t} \tilde{w}_{3}\right) \\
& =\tilde{w}_{1}\left(\tilde{w}_{2}-\tilde{w}_{3}\right)+\tilde{w}_{1}\left(2 \tilde{w}_{3}-\tilde{w}_{2}-\tilde{w}_{3}\right)=0,
\end{aligned}
$$

as we wanted to see.

