9.1. Separation of variables for non-homogeneous problems

Solve the following equations using the method of separation of variables and superposition principle. If the boundary conditions are non-homogeneous, find a suitable function satisfying the boundary conditions, and subtract it from the solution.
(a)

$$
\left\{\begin{aligned}
u_{t}-u_{x x} & =t+2 \cos (2 x), & & (x, t) \in(0, \pi / 2) \times(0, \infty), \\
u_{x}(0, t) & =0, & & t \in(0, \infty), \\
u_{x}(\pi / 2, t) & =0, & & t \in(0, \infty), \\
u(x, 0) & =1+2 \cos (6 x), & & x \in[0, \pi / 2] .
\end{aligned}\right.
$$

(b)

$$
\left\{\begin{aligned}
u_{t}-u_{x x} & =1+x \cos (t), & & (x, t) \in(0,1) \times(0, \infty), \\
u_{x}(0, t) & =\sin (t), & & t \in(0, \infty), \\
u_{x}(1, t) & =\sin (t), & & t \in(0, \infty), \\
u(x, 0) & =1+\cos (2 \pi x), & & x \in[0,1] .
\end{aligned}\right.
$$

Hint: The function $w(x, t)=x \sin (t)$ fulfills the boundary conditions from above.
(c) Mixed Boundary Conditions.

$$
\left\{\begin{aligned}
u_{t}-u_{x x} & =\sin (9 x / 2), & & (x, t) \in(0, \pi) \times(0, \infty) \\
u(0, t) & =0, & & t \in(0, \infty) \\
u_{x}(\pi, t) & =0, & & t \in(0, \infty) \\
u(x, 0) & =\sin (3 x / 2), & & x \in[0, \pi]
\end{aligned}\right.
$$

SOL:

(a) In Lecture 9 we have seen that the solution of the inhomogeneous problem can be obtained by applying the method of separation of variables, that is writing

$$
u(x, t)=\sum_{n \geq 0} T_{n}(t) X_{n}(x),
$$

where the ODE solved by $X_{n}(x)$ and $T_{n}(t)$ are determined by the homogeneous problem (i.e. setting 0 to the right hand side of the PDE). We already know that the function $v(x, t)=X(x) T(t)$ solves the homogeneous problem $v_{t}-v_{x x}=0$ if $\frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime}(t)}{T(t)}=\lambda=$ constant, which implies as usual that

- If $\lambda>0$,

$$
X(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x)
$$

- If $\lambda=0$,

$$
X(x)=A+B x
$$

- If $\lambda<0$,

$$
X(x)=A \cosh (\sqrt{-\lambda} x)+B \sinh (\sqrt{-\lambda} x) .
$$

Imposing the initial conditions $v_{x}(0, t)=v_{x}(\pi / 2, t)=0$ is equivalent to ask $X^{\prime}(0)=$ $X^{\prime}(\pi / 2)=0$. This implies directly that $A=B=0$ if $\lambda<0$, and $B=0$ if $\lambda=0$. If $\lambda>0$ we get that $B=0$, and $\cos (\sqrt{\lambda} \pi / 2)=0$, that is, $\lambda_{n}=4 n^{2}$ is the set of possible values for λ (including $n=0$ to account for the constant arising from $\lambda=0$). Thus, the corresponding solutions are $X_{n}(x)=\cos (2 n x)$, and we are looking for a general solution of the form

$$
u(x, t)=\sum_{n \geq 0} T_{n}(t) \cos (2 n x)
$$

for some functions $T_{n}(t)$ to be determined. From the initial condition, we directly get that

$$
T_{0}(0)=1, \quad T_{3}(0)=2, \quad T_{n}(0)=0, \text { for all } n \notin\{0,3\} .
$$

On the other hand, imposing that $u_{t}-u_{x x}=t+2 \cos (2 x)$ we get

$$
\sum_{n \geq 0}\left(T_{n}^{\prime}(t)+4 n^{2} T_{n}(t)\right) \cos (2 n x)=t+2 \cos (2 x) .
$$

That is,

$$
T_{0}^{\prime}(t)=t, \quad T_{1}^{\prime}(t)+4 T_{1}(t)=2, \quad T_{n}^{\prime}(t)+4 n^{2}(t)=0, \text { for all } n \geq 2
$$

We have various ODE with the corresponding initial conditions to be solved for each T_{n} :
($n=0$) In this case,

$$
T_{0}^{\prime}(t)=t, \quad T_{0}(0)=1, \quad \Rightarrow \quad T_{0}(t)=1+\frac{1}{2} t^{2}
$$

($n=1$) In this case,

$$
T_{1}^{\prime}(t)+4 T_{1}(t)=2, \quad T_{1}(0)=0, \quad \Rightarrow \quad T_{1}(t)=\frac{1}{2}-\frac{1}{2} e^{-4 t}
$$

(To solve the ODE, we notice that the solution to the homogeneous ODE is $C e^{-4 t}$, and that a particular solution is simply the constant $\frac{1}{2}$. By adding them up, and choosing C such that the initial condition holds, we get our solution.)
($n=3$) In this case,

$$
T_{3}^{\prime}(t)+36 T_{3}(t)=0, \quad T_{3}(0)=2, \quad \Rightarrow \quad T_{3}(t)=2 e^{-36 t}
$$

$(n \notin\{0,1,3\})$ In this case,

$$
T_{n}^{\prime}(t)+4 n^{2} T_{n}(t)=0, \quad T_{n}(0)=0, \quad \Rightarrow \quad T_{n}(t)=0
$$

Thus, the general solution is given by

$$
u(x, t)=1+\frac{1}{2} t^{2}+\frac{1}{2}\left(1-e^{-4 t}\right) \cos (2 x)+2 e^{-36 t} \cos (6 x)
$$

(b) The first thing to notice is that the boundary conditions are now non-homogeneous. Thus, we have to find a new function $w(x, t)$ satisfying such non-homogeneous boundary conditions, and study the problem being satisfied by $v(x, t)=u(x, t)-$ $w(x, t)$.
In this case, from the hint $w(x, t)=x \sin (t)$ satisfies the boundary conditions for $t \geq 0$. Let us write the problem satisfied by $v(x, t)=u(x, t)-x \sin (t)$:

$$
\left\{\begin{aligned}
v_{t}-v_{x x} & =1, & & (x, t) \in(0,1) \times(0, \infty), \\
v_{x}(0, t) & =0, & & t \in(0, \infty), \\
v_{x}(1, t) & =0, & & t \in(0, \infty), \\
v(x, 0) & =1+\cos (2 \pi x), & & x \in[0,1] .
\end{aligned}\right.
$$

Solving the associated ODE problem coming from the separation of variables and imposing the boundary conditions as before, we get that the possible values of λ (the constant realising $\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{T}=\lambda$) are given by $\pi^{2} n^{2}$ for $n \in\{0,1,2, \ldots\}$, and the associated solutions are $X_{n}(x)=\cos (n \pi x)$. Thus, we are looking for a general solution of the form

$$
v(x, t)=\sum_{n \geq 0} T_{n}(t) \cos (n \pi x) .
$$

From the initial condition, we directly get that

$$
T_{0}(0)=1, \quad T_{2}(0)=1, \quad T_{n}(0)=0, \text { for all } n \notin\{0,2\} .
$$

On the other hand, imposing that $v_{t}-v_{x x}=1$ we get

$$
\sum_{n \geq 0}\left(T_{n}^{\prime}(t)+\pi^{2} n^{2} T_{n}(t)\right) \cos (n \pi x)=1
$$

That is,

$$
T_{0}^{\prime}(t)=1, \quad T_{n}^{\prime}(t)+\pi^{2} n^{2} T_{n}(t)=0, \text { for all } n \geq 1
$$

And we can solve the various ODE for each T_{n} :
($n=0$) In this case,

$$
T_{0}^{\prime}(t)=1, \quad T_{0}(0)=1, \quad \Rightarrow \quad T_{0}(t)=1+t
$$

($n=2$) In this case,

$$
T_{2}^{\prime}(t)+4 \pi^{2} T_{2}(t)=0, \quad T_{2}(0)=1, \quad \Rightarrow \quad T_{2}(t)=e^{-4 \pi^{2} t}
$$

$(n \notin\{0,2\})$ In this case,

$$
T_{n}^{\prime}(t)+\pi^{2} n^{2} T_{n}(t)=0, \quad T_{n}(0)=0, \quad \Rightarrow \quad T_{n}(t)=0
$$

Thus,

$$
v(x, t)=1+t+e^{-4 \pi^{2} t} \cos (2 \pi x)
$$

and, therefore,

$$
u(x, t)=v(x, t)+w(x, t)=1+t+e^{-4 \pi^{2} t} \cos (2 \pi x)+x \sin (t)
$$

(c) Once again, calling v the solution of the homogeneous equation $v_{t}-v_{x x}=0$, $v(0, t)=v_{x}(0, t)=0$ we have that the ODE obtained by the separation of variables $v(x, t)=X(x) T(t)$ has solutions

- If $\lambda>0$,

$$
X(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x)
$$

- If $\lambda=0$,

$$
X(x)=A+B x
$$

- If $\lambda<0$,

$$
X(x)=A \cosh (\sqrt{-\lambda} x)+B \sinh (\sqrt{-\lambda} x)
$$

If $\lambda=0$, from $X(0)=0$ we get that $A=0$, and from $X^{\prime}(\pi)=0$ we get that $B=0$, so that only the trivial solution remains.

If $\lambda<0$, from $X(0)=0$ we get $A=0$, and from $X^{\prime}(\pi)=0$ we get $B=0$, so that again, only the trivial solution remains.

Let $\lambda>0$. From $X(0)=0$ we get $A=0$. From $X^{\prime}(\pi)=0$ we get $\cos (\sqrt{\lambda} \pi)=0$. That is,

$$
\sqrt{\lambda}=n+\frac{1}{2}, \quad \text { for } \quad n \in\{0,1,2, \ldots\}
$$

Thus, the set of admissible values for λ is $\lambda_{n}=\left(n+\frac{1}{2}\right)^{2}$, and the corresponding solutions are $X_{n}(x)=\sin \left(\left(n+\frac{1}{2}\right) x\right)$.
We are looking for a general solution of the form

$$
u(x, t)=\sum_{n \geq 0} T_{n}(t) \sin \left(\left(n+\frac{1}{2}\right) x\right)
$$

for some functions $T_{n}(t)$ to be determined. From initial conditions,

$$
T_{1}(0)=1, \quad T_{n}(0)=0, \text { for all } n \neq 1
$$

Imposing that the equation is fulfilled, we get

$$
u(x, t)=\sum_{n \geq 0}\left(T_{n}^{\prime}(t)+\left(n+\frac{1}{2}\right)^{2} T_{n}(t)\right) \sin \left(\left(n+\frac{1}{2}\right) x\right)=\sin \left(\frac{9 x}{2}\right)
$$

Thus, our ODEs are
($n=1$) In this case,

$$
T_{1}^{\prime}(t)+\frac{9}{4} T_{1}(t)=0, \quad T_{1}(0)=1, \quad \Rightarrow \quad T_{1}(t)=e^{-\frac{9 t}{4}}
$$

($n=4$) In this case,

$$
T_{4}^{\prime}(t)+\frac{81}{4} T_{4}(t)=1, \quad T_{4}(0)=0, \quad \Rightarrow \quad T_{4}(t)=\frac{4}{81}-\frac{4}{81} e^{-\frac{81 t}{4}} .
$$

($n \notin\{1,4\}$) In this case,

$$
T_{n}^{\prime}(t)+\left(n+\frac{1}{2}\right)^{2} T_{n}(t)=0, \quad T_{n}(0)=0, \quad \Rightarrow \quad T_{n}(t)=0
$$

And our solution is therefore given by

$$
u(x, t)=e^{-\frac{9 t}{4}} \sin \left(\frac{3 x}{2}\right)+\frac{4}{81}\left(1-e^{-\frac{81 t}{4}}\right) \sin \left(\frac{9 x}{2}\right) .
$$

9.2. Conservation of energy Suppose $u(x, t)$ is periodic on $(0, \pi)$ and solves $u_{t t}-u_{x x}=f(x)$, for some periodic function f.
(a) Show that if $f \equiv 0$, then the energy

$$
E(t):=\frac{1}{2} \int_{0}^{\pi}\left(u_{t}(x, t)\right)^{2}+\left(u_{x}(x, t)\right)^{2} d x
$$

is conserved, i.e. $E(t)=E(0)$ for all $t>0$.
(b) Inspired by the homogeneous case, find a similar conserved quantity when $f(x)=\sum_{n=1}^{M} A_{n} \sin (n x)$.
SOL:
(a) To show that $E(t)$ is constant, we prove $E^{\prime}(t)=0$ for all $t>0$:

$$
\begin{aligned}
\frac{d}{d t} E(t) & =\int_{0}^{\pi} u_{t}(x, t) \frac{d}{d t} u_{t}(x, t)+u_{x}(x, t) \frac{d}{d t} u_{x}(x, t) d x \\
& =\int_{0}^{\pi} u_{t}(x, t) u_{t t}(x, t)+u_{x}(x, t) u_{x t}(x, t) d x \\
& =\int_{0}^{\pi} u_{t}(x, t) u_{x x}(x, t)+u_{x}(x, t) u_{x t}(x, t) d x \\
& =\int_{0}^{\pi}-u_{t x}(x, t) u_{x}(x, t)+u_{x}(x, t) u_{x t}(x, t) d x \\
& =0
\end{aligned}
$$

where in the third line we used $u_{t t}=u_{x x}$, and in the forth line we integrated by parts in x.
(b) Notice that if $F(x)$ is such that $F^{\prime \prime}(x)=f(x)$, then $w(x, t):=u(x, t)+F(x)$ solves the homogeneous wave equation $w_{t t}-w_{x x}=0$. Applying the first point to w we get that

$$
\begin{aligned}
E(t): & =\frac{1}{2} \int_{0}^{\pi}\left(w_{t}(x, t)\right)^{2}+\left(w_{x}(x, t)\right)^{2} d x \\
& \left.=\frac{1}{2} \int_{0}^{\pi}(u(x, t)+F(x))_{t}\right)^{2}+\left((u(x, t)+F(x))_{x}\right)^{2} d x \\
& =\frac{1}{2} \int_{0}^{\pi}\left(u_{t}(x, t)\right)^{2}+\left(u_{x}(x, t)+F^{\prime}(x)\right)^{2} d x
\end{aligned}
$$

is conserved. It is immediate to see that in our case

$$
F(x)=\sum_{n=1}^{M} \frac{-A_{n}}{n^{2}} \sin (n x) .
$$

9.3. Multiple choice Cross the correct answer(s).
(a) Consider the non-homogeneous heat equation

$$
\begin{cases}u_{t}-u_{x x}=p(t) u, & (x, t) \in(0, \pi) \times(0, \infty), \\ u(0, t)=u(\pi, t)=0, & t \in(0, \infty), \\ u(x, 0)=f(x), & x \in(0, \pi),\end{cases}
$$

where $p(t)$ is a given function of t, and $f(x)=\sum_{n=1}^{M} A_{n} \sin (n x) \not \equiv 0$. Then, for $k>1$

$$
\begin{aligned}
& \mathrm{X} \text { If } p(t)=(k+1) t^{k}, \lim _{t \rightarrow+\infty} e^{-t^{k+1}} u(1, t)=0 . \\
& \bigcirc \text { If } p(t)=(k+1) t^{k}, \lim _{t \rightarrow+\infty} u(1, t)=+\infty \\
& \bigcirc \text { If } p(t)=\sin (t), \lim _{t \rightarrow+\infty} u(1, t)=+\infty \\
& X \text { If } p(t)=1, \lim _{t \rightarrow+\infty} u(1, t)=A_{1} \sin (1) .
\end{aligned}
$$

SOL: There are two ways to solve the PDE: the first one is by noticing that ${ }^{1}$

$$
\left(e^{-\int_{0}^{t} p(\tau) d \tau} u\right)_{t}-\left(e^{-\int_{0}^{t} p(\tau) d \tau} u\right)_{x x}=0
$$

Hence, setting $w(x, t)=e^{-\int_{0}^{t} p(\tau) d \tau} u(x, t)$, we have (see Exercise 8.1(a)), that

$$
w(x, t)=\sum_{n=1}^{M} A_{n} e^{-n^{2} t} \sin (n x),
$$

giving

$$
u(x, t)=e^{\int_{0}^{t} p(\tau) d \tau} \sum_{n=1}^{M} A_{n} e^{-n^{2} t} \sin (n x) .
$$

If this is too tricky for your taste, we can always use the method of separation of variables $u(x, t)=X(x, t) T(x, t)$. We get the two ODEs: $T^{\prime}(t)-p(t) T(t)-\lambda T(t)=0$ and $X^{\prime \prime}(x)-\lambda X(x)=0$. As usual, the boundary conditions $u(0, t)=u(\pi, t)=0$ imply that $X(x)=X_{n}(x)=\sin (n x)$ (again, see Exercise 8.1(a)). On the other side

$$
T_{n}^{\prime}(t)+\left(n^{2}-p(t)\right) T_{n}(t)=0,
$$

gives us $T_{n}(t)=T_{n}(0) \exp \left\{-n^{2} t+\int_{0}^{t} p(\tau) d \tau\right\}$. The initial datum $u(x, 0)=f(x)$ reads

$$
\sum_{n=1}^{+\infty} T_{n}(0) \sin (n x)=\sum_{n=1}^{M} A_{n} \sin (n x),
$$

[^0]giving $T_{n}(0)=A_{n}$ for $n=1, \ldots, M$, and $T_{n}(0)=0$ for $n>M$. We get the general solution
$$
u(x, t)=\sum_{n=1}^{M} A_{n} \exp \left\{-n^{2} t+\int_{0}^{t} p(\tau) d \tau\right\} \sin (n x)=e^{\int_{0}^{t} p(\tau) d \tau} \sum_{n=1}^{M} A_{n} e^{-n^{2} t} \sin (n x) .
$$

Having the explicit solution, the correct answers are immediate.

Extra exercises

9.4. Solve the following non-homogeneous problem.

$$
\left\{\begin{aligned}
u_{t}-u_{x x} & =-u, & & (x, t) \in(0, \pi) \times(0, \infty), \\
u(0, t) & =0, & & t \in(0, \infty), \\
u(\pi, t) & =0, & & t \in(0, \infty), \\
u(x, 0) & =\sin (x), & & x \in[0, \pi] .
\end{aligned}\right.
$$

SOL: In this case, the corresponding base of functions is given by $X_{n}(x)=\sin (n x)$ and $\lambda_{n}=n^{2}$ are the admissible values associated. Thus, we are looking for a general solution of the form

$$
u(x, t)=\sum_{n \geq 1} T_{n}(t) \sin (n x) .
$$

From the initial condition,

$$
T_{1}(0)=1, \quad T_{n}(0)=0, \text { for all } n \geq 2 .
$$

On the other hand, imposing that $u_{t}-u_{x x}+u=0$,

$$
\sum_{n \geq 1}\left(T_{n}^{\prime}(t)+n^{2} T_{n}(t)+T_{n}(t)\right) \sin (n x)=0 .
$$

That is,

$$
T_{n}^{\prime}(t)+\left(n^{2}+1\right) T_{n}(t)=0, \quad \text { for all } n \geq 1 .
$$

Solving the corresponding ODEs,
($n=1$) In this case,

$$
T_{1}^{\prime}(t)+2 T_{1}(t)=0, \quad T_{1}(0)=1, \quad \Rightarrow \quad T_{1}(t)=e^{-2 t}
$$

($n \geq 2$) In this case,

$$
T_{n}^{\prime}(t)+\left(n^{2}+1\right) T_{n}(t)=0, \quad T_{n}(0)=0, \quad \Rightarrow \quad T_{n}(t)=0
$$

And the general solution is given by

$$
u(x, t)=e^{-2 t} \sin (x) .
$$

[^0]: ${ }^{1}$ this nothing else that the method to solve general linear first order ODE: in t for a fixed x the heat equation is of this class. Cf Exercise sheet 1.

