Analysis 3 - PVK
Contents
I Foreword and Disclaimer
II Map of Analysis 3
1 Introduction
1.1 ODE
1.2 PDF
$2 \quad 1^{\text {st }}$ Order Quasilinear PDEs
2.1 Method of Chrractristics
2.2 Conservation Laws
$3 \quad 2^{\text {nd }}$ Order Linear PDEs
$3.1 \quad$ Classification
3.2 Wave equation
3.3 Heat equation
3.4 Laplace and Poisson equation

4 Separation of variables
4.1 Honogreas heat and wave equations
4.2 Thhonogeneors heat and wave equations
4.3 Laplace equation on rectangular domains
4.4 Laplace equation on circular domains

5 Maximum principles

I: Foreword \& Disclaimer
This manuscript is based on the 2021 and 2019 Analysis III lectures of Prof. Iacobelli.

It will sore as the base of the 2022 AMIN PVK.
It was put together by Jean Mégret (megrat.j) and Anthony Salib (asalib) along with an exercise script.
All the material cinc(culing a notability version of this script) will be mad avaribabl on the AMIV website and on https://n.ethz.ch/~megretj

If you find mistakes or think we should change stiff, plan contact us by email.

This manuscript is nowhere near complete with all the lecture content and only torgets the (to our eyes) most relevant pieces of theory in order to perform well at the exam.
We do not take any responsability in providing completeness nor corccheses is this script.

1: Introduction
1.1 Ordinary Differential Equations (ODEs):

ODEs are equations with functions and deriatius of one independent variable, they are the base to solve PDEs, so you should really be familiar on how to solve them. Just like PDEs, many methods can be used to solve ODEs depending on their form.
So it's important to be able to $\left\{\begin{array}{l}\text { distinguish } \\ \text { recognise }\end{array}\right\}$ the different types of equations in order to solve then later on.
cosami for PDES!
We wont review ODE solving methods here. However, I encourage you to look back at your Analysis course for a refersher. For this course, you will (at the very lear) need:

ODEs you should know $\lambda x(t)=x^{\prime}(t) \Rightarrow x(t)=C e^{t}$
$\lambda \in \mathbb{R}$ by heart!

$$
\begin{align*}
& \lambda x(t)=-x^{\prime \prime}(t) \Rightarrow x(t)=\alpha \sin (\sqrt{\lambda} t)+\beta \cos (\sqrt{\lambda} t) \tag{+}\\
& \lambda x(t)=x^{\prime \prime}(t) \Rightarrow x(t)=\alpha \sinh (\sqrt{\lambda} t)+\beta \cosh (\sqrt{\lambda} t)
\end{align*}
$$

$\lambda \in \mathbb{R}^{+}$
1.2 Partial Differential Equations (PDEs):

Order Highest order partial derivative of the function wet. any variably.
Linearity A liar PDE is of the form

$$
a^{(0)} u+\sum_{i=1}^{n} a_{i}^{(1)} u_{x_{i}}+\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j}^{(2)} u_{x_{i} x_{j}}+\ldots=f\left(x_{1}, \ldots, x_{n}\right)
$$

be aware that the function u and the coefficients $a^{(2)}$ both depend on the variables x_{1}, \ldots, x_{n}

Quasi- Liner writ the highest order derivative.
linearity
Find the higher order deviation and rephacit with α (advents variable)
Then: is the equation linear witt α ?

Homogeneity A linear $P D E$ is homogenious if the right side, ie. every term that doeent depend on u, is equal to 0 .

Schwartz Buically: if u is smooth $c^{c^{2}}$, twice continuously
Theorem so very often the case, bot not always!
Vector space Let $L[u]=f(x)$ be a linear inhonogenecos PDE with solution u_{p}. of solution Let $L[u]=0$ - homogeneous -"- solutions u_{h} and $u_{h 2}$ theorem:
caky superposition $\longrightarrow T$ hen $\forall \alpha, \beta \in \mathbb{R}: \alpha u_{h 1}+\beta u_{h 2}$ is a solution of $L[u]=0$ principle)

$$
\alpha u_{n_{1}}+\beta u_{n_{2}}+u_{p}-\quad L(u)=f(x)
$$

During this lecture, we restrict ourselves to functions of two variables:

$$
u: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

2: $1^{\text {st }}$ Order Quadinear PDEs
2.1 Method of characteristics (M.o.C.)
(initial condition + PDE)
The method of characteristics will helps us solve some Cauchy problems of $1^{\text {st }}$ Order quasilinear PDEs. However, in this lecture, we only look at either conssuation laws (particular type of quasilinear, weill sec this right offer) or linear equations of the form:

1. Order, linear, 2 variables

$$
a(x, y) u_{x}+b(x, y) u_{y}=c_{0}(x, y) u+c_{1}(x, y)=c(x, y, u)
$$

with $\underbrace{u(x, y)=d(x, y)}$ for x, y constrained to a domain $D \subset \mathbb{R}^{2}$ initial condition

Only well-posed problems can be solved using the M.O.C.
During the semester we looked at plenty of different initial conditions.

- $u(x, 0)=x^{2}$
- $u(x, y)=1$ on the unit circle

The idea behind the M.O.C. is very similar to how we solve ODEs graphically. Take: $2 x(t)=x^{(}(t)$, we then know $x(t)=C \cdot e^{2 t}$. Without an initial condition $\exists \infty$-many solutions $(~(~ \in \mathbb{R})$.
But, if we have an initial condition, say $x(0)=1$.
a unique solution will cross this initial condition and now we have a unique solution!

Now for PDEs, this is slightly more complex, we have an infinite set of solutions in space $\left(\mathbb{R}^{3}\right)$ and our initial condition is a path in span (instead of a point in the plane). The ∞-sat of solutions will be paranutrised
by our characteristics. Alloy with the initial condition, they will knit the unique solution surface $u(x, y)$.

However in order to be able to separate the initial condition from the cherachoistics, an must go through a small procedure.

We can "proove" this prodedure via a graphical interpretation of the problem
First, let's rewrite the PDE clopping out the veriablus to simplify notation, ie. a $(x, y)=a)$

$$
a u_{x}+b u_{y}-c_{0} u-c_{1}=0 \Longleftrightarrow\left(\begin{array}{c}
a \\
b \\
c_{0} u+c_{1}
\end{array}\right)\left(\begin{array}{c}
u_{x} \\
u_{y} \\
-1
\end{array}\right)=0
$$

Does the second form remind you of anything? \Rightarrow its a scalar product between the normal of the surfau spanned by u, and another vector!
https://www.geogebra.org/m/kxat7g3h
Example $u=x^{2}+y$, the normal is $n=\left(\begin{array}{c}u_{x} \\ u_{y} \\ -1\end{array}\right)=\left(\begin{array}{c}2 x \\ 1 \\ -1\end{array}\right)$ normal vector in the point $Q=(0.5,1), n=\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right)$

But just, what is this other vector if its scalar product with the normal of the plan $u(x, y)$ is equal to zero?
\Rightarrow It's orthogonal to the normal, so it's a tangent vector of $u(x, y)$!
So $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ is somehow related to the tangent of $u(x, y)$ and thus to the derivative of the plane.
In fact if we parametrize x and y trough other variables sand t, $x(s, t), y(s, t)$, we can writs:

$$
\begin{array}{ll}
\frac{d x}{d t}=a(x(t), y(t)) & x(0, s)=x_{0}(s) \\
\frac{d y}{d t}=b(x(t), y(t)) & \text { with initial condition } \\
\frac{d u}{d t}=c(0, s)=y_{0}(s) \\
\frac{d(t), y(t))}{} & \tilde{u}(0, s)=u_{0}(s)
\end{array}
$$

Which is a set of ODEs, and ODEs we can solve!
So, in a nutshell:

- Mst Order linear PDEs can be seen as a scalar produce between 2 vectors.
- This leads us totheintuition that $\left(\begin{array}{l}a \\ b \\ c\end{array}\right)$ has something to do with the first order dariatian of x, y and u.
- This means, ur can transform the initial problem into a st of ODEs parametrised by s and t that we can solve for x, y and u.
x, y space
PDE +ininiciowition $\xrightarrow{x(s, t) y(s, t)} \begin{gathered}s, t \text { spar } \\ \text { We chook } s, ~ s o ~ t h a t ~ i t ~ p a r a m e t r i e s s ~ t h e ~ i n i t i a l ~ c a r d i t i o n ~ a n d ~ " f r e s " ~\end{gathered}$ itself from thu PDE. So now thee's ont one vanblu: $t!\Rightarrow O D E$ d Solve ODE
solution $u(x, y) \stackrel{s(x, y), t(x, y)}{ }$ solution $\tilde{u}(s, t)$
(\sim see 'book chap. 2.3 for a mon in depth explanation)

That's enough intuition for now, what you should really be able to do is to solve problems. For this you can follow this procedure:

Possible method for M.O.C.
(1) Identify components in the equation (a, b, c, d, D)
(2) Parametrize the initial condition

$$
T(s)=\left(\begin{array}{l}
x(0,3) \\
y(0, s) \\
\sigma(0,5)
\end{array}\right)
$$

(3) Write down the characteristic equations and solve this set of coupled ODE s to find $x(s, t), y(s, t), u(s, t)$

$x_{t}=a$	$x(0, s)=x_{0}(s)$
$y_{t}=b$	$y(0, s)=y_{0}(s)$
$\tilde{u}_{t}=c$	$\tilde{u}^{2}(0, s)=\tilde{u}_{0}(s)$

(4) Find inverse mapping for $t \rightarrow t(x, y)$ and $s \rightarrow s(x, y)$.
(5) Plug in \tilde{u} to find the final solution $u(x, y)$ and insect solution in problem to check it.

Unfortunately depending on the problem, a step of the method might not war and there might not even be a solution!

Obstacles towards global solution
(i) Solution might blow up in frith time
(ii) Characteristics intersect initial curve mon them once.
(iii) Characteristics intersect with each other.
(iv) If vector field (a, b) vanishes at some point.

Hopefully, however there's a way to check whether I! solution, before starting to solve everything.

Existence and Uniqueness Theorem

Assume \exists so $\in \mathbb{R}$ sit. the transursality condition holds, then I! solution n of the Cauchy problem defined in a neighborhood of $\left(x\left(0, S_{0}\right), y\left(0, s_{0}\right)\right)$.

Note: This maw, for a least a lith time, then will be a strong solution where the initial condition is transverse to the characteristics. So existance \& uniqueness might h not hold $\forall t$ (maybe only op ontilia c ciricel tim ye!)

Transversality

$$
\begin{aligned}
J & =\operatorname{det}\left(\begin{array}{cc}
a\left(x_{0}(s), y_{0}(s), u_{0}(s)\right) & b\left(x_{0}(s), y_{0}(s), u_{0}(s)\right) \\
\frac{d}{d s} x_{0}(s) & \frac{d}{d s} y_{0}(s)
\end{array}\right) \\
& =\left\{\begin{array}{cc}
a(0, s) & b(0, s) \\
\frac{d}{d s} x(0, s) & \frac{d}{d s} y(0, s)
\end{array}\right. \\
& = \begin{cases}0 & \left.\begin{array}{ll}
\operatorname{Recall}: \\
\operatorname{det}(M) & b \\
c & d
\end{array} \right\rvert\,=a d-b c\end{cases} \\
\neq 0 & \text { for some } s \Rightarrow \begin{array}{l}
\text { no solution exists for } \\
\text { that s some } s \Rightarrow \begin{array}{l}
\text { solution exists for } \\
\text { that } s!
\end{array}
\end{array}
\end{aligned}
$$

initial curve, tangent is $\left(\begin{array}{ll}\frac{d}{d s} & x(0, s) \\ \frac{d}{d s} & y(0, s)\end{array}\right)$
are they transverse? (= not tangential) if so, the characteristics can propagate information away from the initial curve. Rememitrer both should "Knit" the solution

characteristics, ta-gut is $\binom{x_{t}}{y_{t}}$ surface
\rightarrow Example 1
2.2 Conservation Laws (C.L.)

Fancy name for PDEs describing the evolution of conserved quantities.
We use x as a spatial variable and y a temporal variable so $y>0$
General We look for $u(x, y): \mathbb{R} \times[0, \infty) \rightarrow \mathbb{R}$ such that
Formulation

$$
\begin{array}{l|l}
\begin{array}{l}
\text { both either: } u_{y}+\frac{d}{d x} F(u)=0 \\
\text { ara } \\
\text { equivalent! or: } u_{y}+c(u) u_{x}=0
\end{array} & F: \mathbb{R} \rightarrow \mathbb{R} \\
& c(u)=\frac{d}{d u} F(u)
\end{array}
$$

C.L. often come with an initial $\left\{\begin{array}{l}\text { condition } \\ \text { data }\end{array}\right\} u(x, 0)=h(x)$

Example: $u_{y}+c u_{x}=0$ with $c \in \mathbb{R}$ is the transport equation. $\begin{array}{ll} & F(u)=c \\ & (u)=c u\end{array}$

$$
u_{y}+u u_{x}=0
$$

is the Burgers equation $C(u)=u$

$$
F(u)=\frac{1}{2} u^{2}
$$

Turns out, these type of problems (ie. incl. initial data) can be solved thanks to our beloved method of characteristics (since they are Mst Order Qaasilinear PDEs).!

To help the study of such equations, we notice the following:

- The charatuistic equations are of the form: $\left\{\begin{array}{lll}x_{t}=c(u) & \text { with } & x_{0}(s)=s \\ y_{t}=1 & \text { with } & y_{0}(s)=0 \\ \tilde{u}_{t}=0 & \text { with } & \tilde{u}_{0}(s)=h(s)\end{array}\right.$
- The characteristics ar straight lines: $y(s, t)=t$
- $u(x, y)=h(x-c(u(x, y)) y)$
is an implicit solution to the problem.
- implicit soluhon is when the solution of u depends on u itself.
- If cue look at the transversality condition, ur see that:

$$
J=\left(\begin{array}{cc}
x_{t} & y_{t} \\
x_{s} & y_{s}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cc}
c(u) & 1 \\
1 & 0
\end{array}\right) \equiv 1 \neq 0
$$

By the existance theorem, these equations always have a local solution! But, and this is when it gets spicy, this solution might only hold up until the critical time y_{c}.
Critical time It is defined by:

The idea of this formula is to see when the derivative of the solution blows up (ie. .un thur ar discontinuities). If there are no discativiitis in μ_{1}, then then's also no y_{c}.

In fimum

$$
y_{c}=\inf _{s \in \mathbb{R}: c\left(u_{0}(s)\right)_{s}<0}\left\{\frac{-1}{c^{\prime}\left(u_{0}(s)\right) \cdot u_{0}^{\prime}(s)}\right\}
$$

Equivalently, we can write:

$$
y_{c}=-\left(\inf _{s \in \mathbb{R}} \frac{d}{d s}\left(\frac{d f}{d u}(u(s, 0))\right)\right)^{-1}
$$

Note $y_{c}>0$, otherwise it cannot be a time
The infimum is the greatest lower bound.
Let $S \subset P$ be a set, a lower bound is any element $a \subset P$ s.t.

$$
a \leq x \forall x \in S
$$

The $\inf (S)=y$ if $y \geq a$ where a is any lower bound of S.
E.g. Let $P=\mathbb{N}, S=\{5,7,10\}$, then 1,2,3,4,5 ar lower bounds but 5 is the highest lower bound.

- $\inf _{x \in \mathbb{R}}\left(e^{x}\right)=0$

$$
\begin{gathered}
\inf _{x \in \mathbb{R} \backslash(2,-\infty)}\left(x^{2}\right)=4 \\
\hline
\end{gathered}
$$

If $y_{c}>0$, the strong solution only holds up to $t=y_{c} \quad$ (compression wave) If $y_{c} \leqslant 0$, the strong solution holds for all $y>0$ (expansion wave)

Rankine

- Hugoniot Condition

$$
\gamma_{y}(y)=\frac{F\left(u^{+}\right)-F\left(u^{-}\right)}{u^{+}-u^{-}}
$$

Solutions γ that satisfy the RH-Condition are called shock-waves.

If we then integrate γ writ y we get a border $\gamma(y)$. Then:

$$
u(x, y)= \begin{cases}u^{-} & x<\gamma(y) \\ u^{+} & x>\gamma(y) \\ \text { below/right }\end{cases}
$$

To make sure a border really is a good one, it must satisfy the entropy condition.

Entropy

$$
c\left(u^{+}\right)<\gamma_{y}<c\left(u^{-}\right)
$$

\rightarrow Example 2
\rightarrow Example 3

3: $2^{\text {nd }}$ Order Linear PDEs
3.1 Classification

In this lecture you only looked at PDEs of max 2 variables. The general form of $2^{\text {nd }}$ Order Linear PDEs is:

$$
L[u]=\underbrace{a u_{x x}+2 b u_{x y}+c u_{y y}}_{\begin{array}{c}
\text { 2nd order terms } \\
\text { "leading term" } \\
\text { "principal part" }
\end{array}}+\underbrace{d u_{x}+e u_{y}+f u}_{\text {lower order term }}=g
$$

Not:
a, b, c, d, , $, f, g$ are functions of (x, y).. \cdots not u! We are studying linear equations, nor quasilinear!

Given a point $\left(x_{0}, y_{0}\right)$ the discriminant is

$$
\delta(L)\left(x_{0}, y_{0}\right)=b^{2}\left(x_{0}, y_{0}\right)-a\left(x_{0}, y_{0}\right) c\left(x_{0}, y_{0}\right)
$$

The discriminant heps us to define the types of $2 n d$ order PDEs as:
hyperbolic if $\delta(L)\left(x_{0}, y_{0}\right)>0$ (e.g. $u_{y y}-u_{x x}=0$, wave equ)
parabolic if $\delta(L)\left(x_{0}, y_{0}\right)=0 \quad$ (e.g. $u_{y}-u_{x x}=0$, heat eqn $)$
elliptic if $\delta(L)\left(x_{0} y_{0}\right)<0 \quad$ (e.g. $u_{x x}+u_{y y}=0$, Laplace egn)
Since this definition depends on the point we choose (x_{0}, y_{0}), the PDE is classified only locally, it may vary on different parts of the plane (x, y).

3.2 The wave equation (hyperbolic)

The homogeneous cauchy problem looks like:

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0 \\
u(x, 0)=f(x) \\
u_{t}(x, 0)=g(x)
\end{array}\right.
$$

In opposition to the M.O.C. finding a solution to such the Cauchy problem is quite straight ferwerd:

D'Alembert's

Formula for homogeneous wave equation

$$
u(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(s) d s
$$

It's possible to extend this formula to nonhomogeneous problems, however, let's first look at a few properties of the solution of the wave equation.

The solution to the wave equation can be decomposed in a for word and a backward travelling wave, i.e. $U(x, t)=\underbrace{F(x-c t)}_{\text {Forward }}+\underbrace{G(x+c t)}_{\text {Backwerd }}$
(toward poinine x) (towards nights x)
A solution is a Generalized Solution of the wave equation if $f(x)$ and $g(x)$ are piecewise continuous functions. This way, u is alsopiecewise continuous.

We call the characteristics the lines parametrized by $x+c t=\alpha$ and $x-c t=\beta$ with $\alpha, \beta \in \mathbb{R}$. On these lines,

- $u(x, t)$ is constant on these lines.
- singularities propagate along the characteristics.

This can be seen on the following surface plot of a solution.
u is constant alloy the churactoritics

$$
\begin{aligned}
& x-3 t=-2 \\
& x+3 t=-2
\end{aligned}
$$

Note: The sum graph can be visualised as a 20 graph with t repenting time. It is more intuition when we think of time as the second dimasion.

animation available on the website.

Domain of The solution in $\left(x_{0}, y_{0}\right)$ depends on dependence

$$
f\left(x_{0}+c t_{0}\right), f\left(x_{0}-c t_{0}\right) \text { and }
$$ g in the interval [x $\left.x_{0}-c r_{0}, x_{0}+d b_{0}\right]$

Region of All points satisfying $x-c t \leq b, x+c t \geqslant a$ influence are dependant on the initial condition on the interval $[a, b]$

So if we change the I.C. inside $[a, b]$, only points in the region of influence will be affected!
Symmetry of Let $f(x)$ and $g(x)$ be spacially $\begin{aligned} & \text { it } \\ & \text { oed } \\ & \text { even } \\ & \text { periodic }\end{aligned}$ functions, then so is $u(x, t)$.

This property can help us sole wave equations with boundary conditions. See exercise 6.3 from this years exerin sheets.
\rightarrow Example 4

D'Alembert's Formula for inhomogeneous wave equation

Now we're redyfor the inhomogogneows wave equation: The solution to the inhomagneoss Candy problem:

$$
\begin{cases}u_{t t}-c^{2} u_{x x}=F(x, t), & , x \in \mathbb{R}, t \in(0,+\infty) \\ u(x, 0)=f(x) & , x \in \mathbb{R} \\ u_{t}(x, 0)=g(x) & , x \in \mathbb{R}\end{cases}
$$

exists and is given by:

$$
u(x, t)=\frac{f(x+c t)+f(x-c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+t} g(s) d s+\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-\tau)}^{x+c(t-\tau)} F(\xi, \tau) d \xi d \tau
$$

honogenious problem inhomogereity/particulver solution
Although it's nice to have a single formula for all problems of this sort, sometimes it's not super convenient to compute the last term. But, in many cases it's possible to shortcut the tedious computation by applying the principe of suposposition.

So basically, if we...
(1) ... fined one particular solution v, \ldots
(2) ... we can define $w=u-v$ and the Candy problem will become:

$$
\left\{\begin{array}{l}
w_{t t}-c^{2} w_{x x}=u_{t t}-c^{2} u_{x x}-v_{t+}+c^{2} v_{x x}=0 \\
w(x, 0)=u(x, 0)-v(x, 0)=f(x)-v(x, 0) \\
w_{t}(x, 0)=u_{t}(x, 0)-v_{t}(x, 0)=g(x)-v_{t}(x, 0)
\end{array}\right.
$$

(3) This problem is homogeneous and we can solve it with honogenass d'Alembert
(4) Finally we find $u=w+v$.

This superposition technique is especially effective if the inhomogeneity consists of the addition of two functions of one variable: $F(x, t)=f_{1}(x)+f_{2}(t)$

Uniqueness of The solution to
the solution of
the wave equation. $\begin{cases}u_{t t}-c^{2} u_{x x}=F(x, t), & x \in \mathbb{R}, t \in(0,+\infty) \\ u(x, 0)=f(x) & , x \in \mathbb{R} \\ u_{t}(x, 0)=g(x) & , x \in \mathbb{R}\end{cases}$ theorem.
is unique.
$\left(\begin{array}{l}\text { The proof is quite neat and not too difficult so have a look at it in the } \\ \text { lecture notes if you have a bit of time! }\end{array}\right.$
\rightarrow Example 5

Sometimes, however, using d'Alembert, cannot help us to solve the wave equation with boundary conditions. But we're in luck, introduce: the separation of variables.
Here's the type of problem we will solve (but before that, we will quickly introduce the heat equation)
Wave equation with boundary conditions

$$
\left\{\begin{array}{l}
u_{t t}-c^{2} u_{x x}=0 \\
u(x, 0)=f(x) \\
u_{t}(x, 0)=g(x) \\
\text { one of }\left\{\begin{array}{l}
u(0, t)=u(L, t)=0 \\
u_{x}(0, t)=u_{x}(L, t)=0 \\
\text { or mixed }
\end{array}\right.
\end{array}\right.
$$

3.3 Heat equation (parabolic)

The general formulation of this homogeneous ind order linear PDE is

$$
u_{t}-k u_{x x}=0
$$

It is often accompanied by a set of boundary conditions:

$$
\begin{aligned}
& \text { Initial data } \rightarrow\left\{\begin{array}{l}
u_{t}-k u_{x x}=0 \quad(x, t) \in[0, L] \times[0, \infty) \\
u(x, 0)=f(x) \\
\text { Boundary condition } \rightarrow\left\{\begin{array}{l}
u(0, t)=u(L, t)=0 \\
u_{x}(0, t)=u_{x}(L, t)=0 \\
\text { or mixed }
\end{array}\right.
\end{array}\binom{\text { Dirichlet }}{\text { on Newman }}\right.
\end{aligned}
$$

We will see later on how to solve the heat equation. (spoiler: Separation of variables)
Boundary

Until now, we orly solved one dimensional heat equations

The boundary $\partial_{P} Q_{T}$ is defined as

$$
\partial \rho Q_{T}=\left\{\{0\} \times D_{U}\left[0, t_{D}\right] \times \partial D\right\}
$$

y°
But it could a lo be in higher dimensions:

Uniqueness of
Dirichlet problemfor $\left\{\begin{array}{ll}u_{t}-k \Delta u=f & \text { in } Q_{T} \\ u(0, x)=g & \text { on } D \\ u(t, x)=h & \text { on }[0, T) \text { a unique solution. }\end{array}\right.$. the heat equation $\quad\left\{\begin{array}{l}u(0, x)=\mathrm{c} \\ u(t, x)=h\end{array} \quad\right.$ on $[0, T] \times \partial 0$
3.4 Laplace and Poisson Equation reelipici

Both Laplace and Poisson equations use the Laplace operator

$$
\Delta u=\nabla^{2} u=\nabla \cdot \nabla u=\sum_{i=1}^{n} \frac{\partial^{2} u}{\partial x_{i}^{2}}=\sum_{i=1}^{n} u_{x_{i} x_{i}}
$$

As we limit our selves to 2 variables in this carse, we define the Laplace equation as:

$$
\Delta u(x, y)=u_{x x}+u_{y y}=0
$$

Any function that solves the Laplace equation is a Harmonic function.
The Poisson Equation on the other hand is just the inhomogeneous generalization of the Laplace equation:

$$
\Delta u(x, y)=\rho(x, y)
$$

As for hyperbolic (wame) and parabolic (heat) equations, we can define a Problem. Only now, we've traded our time variable t for another spacial variable y. This means there will be no initial condition but the boundaries will now be in 20 instead of on one axis x. This boundary is noted as ∂D.

This means, inside a domain $D \in \mathbb{R}^{2}$, the Poisson/Laplaw equation is true:

$$
\Delta u=\rho(x, y) \quad(x, y) \in D
$$

and on its border, 4 must match some boundary condition, either:

Dirichlet $u(x, y)=g(x, y) \quad(x, y) \in \partial D$
Non Newman $\partial_{n} u(x, y)=\vec{n} \cdot \vec{\nabla} u=g(x, y) \quad(x, y) \in \partial D$
Third kind $u(x, y)+\alpha(x, y) \partial_{n} u(x, y)=g(x, y) \quad(x, y) \in \partial D$
Separation of voriables is the weapon of choir when solving the Laplace equation.
4. Separation of variables

It is a method to solve 2nel Order linear PDEs (heat-,wave-,Laplace-equatin,s) and it accomodates for boundary conditions (spatial-restriction, e.g. $u(x=0, t)=0$)

Contrary to precious solving methods (e.g. d'Alembert formula) it is not a pug \& solve method, but requires a good understanding of the whole mathematiod derivation.

We will seek non-trivial solutions (ie. solution $u(x, t) \neq 0$). Indeed $u=0$ is always solution of homogeneas equations, but honestly it's a not very interesting solution
4.1 For the homogeneous heat and wave equation

The formal derivation is found in the lecture script chap. 5.1. We will simply go over multiple examples to familiarize ourselves with this solving method.
(1) Identify the Problem:
(1.1) PDE :
(1.2) Boundary Condition:
(13) Initial Data:
(2) Apply separation of variables to PDE $u=X(x) T(t)$ and extract ODEs
(2.) ODE for X : (2.2)ODE for T :
(3) Fire general solution for X (21). Make a case distinction for λ !
(4) Find general solution for T (2.2), using λ from above.
(5) Formulate general solution for $u(x, t)=X T$
(6) Use the initial condition to determine the coefficients
(7) And finally, enjoy and write the full solution down

Inhomogeneous
Boundary conditions

If the problem has inhomogeneous baudury conditions $\left(\right.$ e.g. $\left.\begin{array}{c}u(0, t)=1 \\ u(1, t)=1\end{array}\right)$, find a w that solves this inhomgegnity $(\omega=1)$ and subtract it from the the PDE: $v=u-w$. Then solve for v and finely, $u=v+w$.
\rightarrow Example 6

Although you should really understand the step taken above to come to the solution, there are some "shortcuts" you can take if you recognize the type of Cauchy problem. For the homogeneous wave and heat equations.

Heat: $u_{t}-c^{2} u_{x x}=0$
boundary conditions

$$
u(x, 0)=f(x)
$$

Wave: $u_{t t}-c^{2} u_{x t}=0$ boundary conditions $u(x, 0)=f\left(x_{1}\right.$ $u_{t}(\lambda, 0)=g(x)$

The form of the general solution of T depends on the type of equation:

$$
\begin{array}{ll}
T^{\prime}=-c^{2} \lambda T & T^{\prime \prime}=-c^{2} \lambda T \\
\Rightarrow T_{n}=e^{-c^{2}\left(\frac{n \pi}{L}\right)^{2} t} & \Rightarrow T_{n}=A_{n} \cos \left(\frac{n \pi}{L} c t\right)+B_{n} \sin \left(\frac{n \pi}{L} c t^{\prime}\right.
\end{array}
$$

Then, the form of the general solution for X depends on the boundary condition: $u(0, t)=u(L, t)=0 \quad$ Dirichlet

$$
\begin{aligned}
& u_{x}(0, t)=u_{x}(L, t)=0 \quad \text { van Newman } \\
& u_{x}(0, t)=u(L, t)=0 \text { or } u(0, t)=u_{x}(L, t)
\end{aligned}
$$

$$
\left.\begin{array}{ll}
\text { D.B.C.: } X_{n}=\sin \left(\frac{n \pi}{L} x\right) & n=1,2,3, \ldots \\
\text { v.N.B.C.: } X_{n}=\cos \left(\frac{n \pi}{L} x\right) & n=0,1,2,3, \ldots
\end{array}\right\} \lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}
$$

Combining both we get:

Heat equation	Wave Equation
D.B.C. $u(x, t)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$	$u(x, t)=\sum_{n=1}^{\infty} \sin \left(\frac{n \pi}{L} x\right)\left[A_{n} \cos \left(\frac{n \pi}{L} c t\right)+B_{n} \sin \left(\frac{n \pi}{L} c t\right)\right]$
N.N.B. $u(x, t)=\frac{1}{2} B_{0}+\sum_{n=1}^{\infty} B_{n} \cos \left(\frac{n \pi}{L} x\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$	$u(x, t)=\frac{A_{0}+B_{0} t}{2}+\sum_{n=1}^{\infty} \cos \left(\frac{n \pi}{L} x\right)\left[A_{n} \cos \left(\frac{n \pi}{L} t\right)+B_{n} \sin \left(\frac{n \pi}{L} t\right)\right]$

The last thing needed are the coefficients A_{n} and B_{n}. We find them either by extracting them directly from the initial condition or by computing them thanks to Fourier decomposition.

Fourier expansion

$A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x$	$A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x$
$B n=\frac{2}{c n \pi} \int_{0}^{2} g(x) \sin \left(\frac{n \pi}{L} x\right) d x$	
$B_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x$	$A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x$
$B_{0}=\frac{2}{L} \int_{0}^{L} g(x) d x, B_{n}=\frac{2}{C n \pi} \int_{0}^{L} g(x) \cos \left(\frac{n \pi}{L} x\right) d x$	

Please use these shortcuts with caution and convince yourself they make sense by computing them from the beginning at least once before you start using them. There's a high probability that I've written has some mistakes somewhere, so be aware (don't worry, I checked it but shill, stay on your guard.)
4.2 Inhomogeneous heat \& wave equation

The method for inhomogeneous equations is a little different:
(1) Identify the Problem:
(1.1) PDE :
(1.2) Boundary Condition:
(1.3) Initial Data:
(2) Apply separation of variables to homognous PDE $u=X(0) T(t)$ and extract ODEA
(2.) ODE for X :
(3) Find general solution for X (21). Make a case distinction for λ !
(4) Formulate general solution for $u(x, t)=X T$ with the basis found in (3)
(5-) Insert in inhomogeneous PDE and use the initial condition to determine the coefficients
(7) And finally, enjoy and write the full solution down
\rightarrow Example 7
4.3 Laplace equation on rectangular domains

Solving a problem where two opposite sides of the bandary condition is zero is doable. So we use linearity of the Laplace equation to split a problem into two subprobtems:

Boundary Splitting

Solve problems for u_{1} and u_{2} (or \tilde{u}_{1} and \tilde{u}_{2}), with separation of varia bes: $u=X Y$

- In the homoogneas direction (x for u_{2}, y of u_{1}):

DBL:

$$
\begin{aligned}
& \text { DBL: } X=A_{n} \sin \left(\sqrt{\lambda_{n}}(x-a)\right) \quad \\
& Y=A_{n} \sin \left(\sqrt{\lambda_{n}}(y-c)\right) \quad\left(\frac{\pi n}{b-a}\right)^{2} \\
& \text { NBC: } \quad X=A_{n} \cos \left(\sqrt{\lambda_{n}}(x-a)\right) \\
& Y=A_{n} \cos (\sqrt{\lambda}(y-c))
\end{aligned}
$$

- In the other direction

DBL:

$$
\begin{aligned}
& Y=C_{n} \sinh \left(\sqrt{\lambda_{n}}(y-c)\right)+D_{n} \sinh \left(\sqrt{\lambda_{n}}(y-d)\right) \\
& X=C_{n} \sinh \left(\sqrt{\lambda_{n}}(x-a)\right)+D_{n} \sinh \left(\sqrt{\lambda_{n}}(x-b)\right) \\
& Y=C_{n} \cosh \left(\sqrt{\lambda_{n}}(y-c)\right)+D_{n} \cosh \left(\sqrt{\lambda_{n}}(y-d)\right) \\
& X=C_{n} \cosh \left(\sqrt{\lambda_{n}}(x-a)\right)+D_{n} \cosh \left(\sqrt{\lambda_{n}}(x-b)\right)
\end{aligned}
$$

NBC
\rightarrow Example 9

Existence of Solution to the Neumana problem

A necessary condition for the existence of a solution to the Newman problem is:

$$
\int \partial_{n} u \quad \int_{\partial D} g(x(s), y(s)) d s=\int_{D} \rho(x, y) d x d y
$$

what comes out $D D$ what's generated inside D For the Laplace equation, the right hand side is 0 .

Existence of solution to the Dirichlet
problem

A necessary condition for the existence of a solution to the Dirichlet problem is continuity of the boundary.

If, in addition, the problem is on a rectangular domain, these equations simplify to,
Neumann

$$
\oint_{\partial D} \partial_{D}(s) d s=\int_{c}^{d} g d y+\int_{a}^{b} k d x-\int_{c}^{d} f d y-\int_{a}^{b} f d x!=0
$$

Dirichlet
The boundary must be continuous, in particular,

$$
\begin{array}{ll}
k(a, d)=f(a, d) & h(b, c)!g(b, c) \\
f(a, c)!h(a, c) & g(b, d) \stackrel{!}{=} k(b, d)
\end{array}
$$

It is possible that the conditions presented are not mel, in that case:
Use linearity and introduce a harmonic polynomial $P_{n}(x, y)=a_{0}+a_{1} x+a_{2} y+a_{3} x y+a_{4}\left(x^{2}-y^{2}\right)$ to $u: \tilde{u}=u+p_{t}$. Then find then coefficients a_{i} so that the condition is met. Then solve the problem for \tilde{u}. Finally find $u=\tilde{u}-p_{n}$
\rightarrow see Serin 11 2017, exrciar 3
Uniqueness for
Dirichlet problem for the Poisson equation

$$
\left\{\begin{array}{ll}
\Delta u=f & \text { in } D \\
u=g & \text { in } \partial D
\end{array} \quad D\right. \text { bounded }
$$

Then the problem has at moos one solution $u \in C^{2}(D) \cap C(\bar{D})$.
4.4 Laplace equation on circular domain

Instead of bering a rectangle, the domain is now a circk (a.k.a circular domain, Ball) of radius a and centred in zero

$$
D=B_{a}=\{0 \leqslant r \leqslant a, \theta \in[0,2 \pi]\}
$$

In that case, it's really not that much more complicated. The only extra step is to change the coordinates. Instead of working with x and y, we work with θ and r. The Laplace equation in polar coordinates is:

$$
\Delta u=w_{r r}+\frac{1}{r} w_{r}+\frac{1}{r^{2}} w_{\theta \theta} \stackrel{!}{=} \quad\left(u: B_{a} \rightarrow \mathbb{R}\right)
$$

where

$$
w(r, \theta)=u(r \cos \theta, r \sin \theta)=u(x(r, \theta), y(r, \theta)) \quad w: \mathbb{B}_{a} \rightarrow \mathbb{R}
$$

Then, we can use the separation of veriables again!

$$
w(r, \theta)=R_{(r)} \Theta(\theta)
$$

Inserting in the Laplace equation, and with the help of Periodicity $\left\{\begin{array}{l}\Theta(0)=\Theta(2 \pi)\end{array}\right.$ get a general solution:

$$
w(r, \theta)=C_{0}+\sum_{n=1}^{\infty} r^{n}\left[A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right]
$$

And as per usual, you can simply insert the boundary conditions to find the coefficients A_{n} and B_{n}.
\rightarrow Example 8

There are other types of Boundaries, the proof is similar but it's quite unlikely that the other types (2-4) will come to the exam, and if it comes, you can simply insert the boundary condition in the general solution to find the coefficients and solve the problem exactly.

Type 1
Ball
$\bar{D}=\{0 \leq r \leq R, 0 \leq \theta<2 \pi\}$
Boundary conditions:

$$
\left.\begin{array}{l}
\Theta^{\prime}(0)=\Theta(2 \pi) \\
\Theta^{\prime}(0)=\Theta^{\prime \prime}(2 \pi)
\end{array}\right\} \text { Periodicity }
$$

Solution: $\omega(r, \theta)=C_{0}+\sum_{n=1}^{\infty} r^{n}\left(A_{n} \sin (n \theta)+B_{n} \cos (n \theta)\right)$
Insert B.C. and find coefficients.

Type 2

$$
\bar{D}=\left\{R_{1} \leq r \leq R_{2}, \quad 0 \leq \theta<2 \pi\right\}
$$

Boundary conditions:

Solution:

$$
\left.\begin{array}{rl}
\omega(r, \theta)=E+F \log (r)+ & \sum_{n=1}^{\infty}\{
\end{array} r^{n}\left[A_{n} \sin (n \theta)+B_{n} \cos (n \theta)\right]+\right\}
$$

Type 3
Cinch
section
Boundary conditions: $\omega(R, \theta)=h(\theta)$
In this case we only look at $N . B C \& D B . C$ so:

$$
\begin{gathered}
D . B . C . \Theta(0)=0 \\
\Theta(\gamma)=0 \\
\omega(r, \theta)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{\gamma} \theta\right) r \frac{n \pi}{\gamma}
\end{gathered}
$$

NBC
$\Theta^{\prime}(0)=0$
$\Theta^{\prime}(\gamma)=0$
$\omega(r, \theta)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{r} \theta\right) r^{\frac{n \pi}{\gamma}}$

Type $4 \quad \bar{D}=\left\{R_{1} \leqslant r \leqslant R_{2}, 0 \leqslant \theta \leqslant \gamma\right\}$
Ring
Section
Boundary conditions: $\omega\left(R_{1}, \theta\right)=k(\theta)$

$$
\omega\left(R_{2}, \theta\right)=h(\theta)
$$

In this case we look at N.BC. and DBC:

D.B.C. $\Theta(0)=0$
$\Theta(\gamma)=0$
$\omega(r, \theta)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi}{\gamma} \theta\right) r \frac{n \pi}{\gamma}$

$$
\begin{gathered}
\text { NB. } \quad \Theta^{\prime}(0)=0 \\
\Theta^{\prime}(\gamma)=0 \\
\omega(r, \theta)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{r} \theta\right) r^{\frac{n \pi}{\gamma}}
\end{gathered}
$$

5: Maximum principles
Before talking about min/max values of a function you should remember, in 2D: $\left(x_{0}, y_{0}\right)$ is an extremum if $\nabla u\left(x_{0}, y_{0}\right)=\left.\binom{u_{x}}{u_{y}}\right|_{\left(x_{0}, y_{0}\right)}\binom{0}{0}=0$
$\left(x_{0}, y_{0}\right)$ is a maximum if it is an extermum and $\left\{\begin{array}{l}\Delta u\left(x_{0}, y_{0}\right) \leq 0 \\ O R \\ u x x \\ 0 R\end{array}{\left.\left.u_{y y}\right|_{y_{0}}\right|_{x_{0}, y_{0}} \leq 0}_{0}^{0} \begin{array}{l}D_{0}, y_{0}\end{array}\right.$
$\left(x_{0}, y_{0}\right)$ is a minimum if it is an extremum and $\left\{\begin{array}{l}\Delta u\left(x_{0}, y_{0}\right) \geq 0 \\ O R \quad u_{x x}, u_{y y} \geq 0 \\ O R \\ D^{2} u\left(x_{0}, y_{0}\right) \geq 0\end{array}\right.$
This also means, in order for these principles to be valiol, they must be C^{2}.
(2 times cortivassl differentiable)

Weak
Maximum
Minimum Principle

Let D be a bounded domain and $u(x, y) \in C^{2}(D) \cap C(\bar{D})$ a harmonic Function.
$\Rightarrow u(x, y)$ will take its maximum on ∂D.

$$
\max _{D} u \leq \max _{D} u=\max _{\partial D} u
$$

The same can be said for the minimum!

$\bar{D}=20 \cup D$

Strong Maximum
Minimum
Principle The same can be said for the minimum!

Mean Value Let $u(x, y)$ be harmonic in D and let $B_{R}\left(x_{0}, y_{0}\right) \subseteq D$ Theorem

$$
u\left(x_{0}, y_{0}\right)=\frac{1}{2 \pi R} \int_{\partial B_{R}\left(x_{0}, y_{0}\right)} u(x(s), y(s)) d s=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(x_{0}+R \cos \theta, y_{0}+R \sin \theta\right) d \theta
$$

Surprisingly, the incuse also hold, so if (x) is satisfied in somudomain D then u is hamairis in that domain!

Maximum
principle for homogeneous heat equation
\rightarrow Example 10

Let u solve $u_{t}=k \Delta u$ in Q_{T} for som $k>0$.
Assume that D is bounded
Then u achieves its maximum (and minimum) on $\partial_{P} Q_{T}$

