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I Foreword Disclaimer

This manuscript is based on the 2021and2019 Analysis II lectures of
Prof Iacobelli

It will sowas the baseofthe2022AMIV PUK

It was put together by Jean Migret megret and Anthony Saliblasaliblalong
with an exercise script
Allthematerial including a notabilityversionofthisscriptwillbemade available on theAMIVwebsite and
on

If youfind mistakes or think we should change stuff please contactusbyemail

Thismanuscript is nowhere near completewith all thelecture contentand
onlytargets the to our eyesmost relevant piecesoftheory in orderto perform
wellat the exam
Wedonottakeanyresponsibility in providing completenessnor correctness inthisscript

IS

https://n.ethz.ch/~megretj
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1 Introduction

1.1 Ordinary Differential Equations ODE

ODES are equations withfunctionsand derivativesof ne independentvariable they are
thebase tosolvePDEs soyoushouldreallybefamiliar on how tosolvethem
Just like PDEs many methods can beused to solve ODEs depending on their
form
So it's important to beableto distinguishthe different typesofequations in order to
solve them lateron recognise

same for PDEs
Wewon't reviewODEsolvingmethods hereHowever I encourage you to lookback at

your Analysis coursefor a refresherFor this courseyou will atthevery leastneed

ODE ANSATZODES you
should know Iaea alt et KIR

by heart Ick sc I alt sinkt Baut IERT
1 NE A Lsink At Bash At HR






































































































































Wir.tone
variable a.k.aderivative

1.2
PartitaDifferential

EquationsPDEs

Order Highest order partial derivative of the function wit any variable

Fü
Linearity A linearPDE is ofthe form

Mut Fianna t.IT a unipst fan an

be aware thatthefunction u andthe coefficients al both depend on the
variables an ihn

Quasi Linearwert thehighestorder derivative

linearity Find the highestorderderivative and replace itwitha.ladumm variable
Then istheequation linearwert
If multiplehighestdeg termileg.uyy.mxreplaw allofthe Öfhüfisnot quasilinear

Homogeneity A linear PDE is homogenious if the rightsich i e everyterm
thatdoesn't depend on a is equal to O

µ twice continuously differentiable

Schwartz Basically if u is smooth Uxy nyx
Theorem very often the casebut not always

Vectorspace het Liu fei be a linear inhomogeneous PDEwith solution up
ofsolution het La 0 homogeneous solutions umanduns
theorem

akasuperposition ThenHaßeR Lunstfun is a solution of LU O
principle zumPuntup LU fa

Duringthis lecture we restrict ourselves to functions of two variables
U P IR






































































































































2 1st Order Quasilinear PDEs
2.1 Method of characteristics M o C initialcondition PDE

Themethod ofcharacteristics willhelps us solve some caucjpoble.ms
of1stOrder quasilinearPDEs However inthis lecture we onlylookat either
conservation laws particulartypeofquasilinear will seethisrightafter or linear equations
of the form 1 Orderlinear 2 variables

alsoy Ux blay My Colay U 4649 Clay u

with

hüft for any constrained to adomain DCI

Only well posedproblems can besolved using the M o C

Duringthe semester we looked at plentyof different initial conditions
U L O D

UCRy 1 on the unit circle

The idea behind the M.o.C.is very similar to how we solve ODES

graphically Take Zack sit we then know at c e Without an initial

But ifwehave an initialcondition sagscho 1

now we have a unique solution
t

Now for PDEs this is slightly more complex wehave an infinite set of
Solutions in space R and our initial condition is a path inspan insead of
a pointin the plane The e set of solution will be parametrised






































































































































by our characteristics Along with
the initial condition thy will knit
the mir solution man uns

However in orderto beable to separate

the initial condition from the characteristics sc

m must go through a smallprocedure
We can proow this procedure via a graphical interpretation oftheproblem

First let's rewrite the PDE dropping out the variables to simplify notation i e abused

aux bug au en o coy Eg o

Does the secondform remind
you of anything its a scalarproductbetweenÖ thenormal of the surface spanned by a and another vector

Ö
Example um achty the normal is n Er E ta

norräftvector in the pointQ105,1 n 1 T
ucay

normal

But just what is this other vector if its scalar product with the normal
of the plan absy is equal to zeroj It orthogonal to the normal so it's a tangent vector of u say

So G is somehow related to the tangut of unsyl and this to the
derivatin of the plane

In fact if we parametrix sc and y trough other
variables sandt.scs tl yls t we can write

dj a alt y 210 s Rod

day b alt yt with initial condition glas god
day Clock yt ucoD a

https://www.geogebra.org/m/kxat7g3h






























































































Which is a setof ODEs and ODES we can solve
So in a nutshell

AstOrder liner PDEs can be seen as a scalarproductbetween 2 vectors

This leadsus totheintuition that G has something to do with the first oder
derivativeof sc y and u
This mean we can transform the initialproblem into a setofObEs parametrisedby
Sand t that we can solve for a y and u

sayspace s t span
PDE initialcondition Äh Wechoose s sothat it parametrizesthe initial conditionandfrees

itselffromthePDESonowthere'sonlyonevorab t ODE
solve ODE

solution ung HÄ solution üesn

laserbook chap 2.3 for a more in depthexplanation

That's enough intuition for now whatyoushould reallybeable to do is tosolve
problems Forthis you can follow thisprocedure

Possiblemethodfor Mio L
Identify components in theequation abc dD

Parametrizetheinitialcondition TEGEL

Write down the characteristic equations and solvethis
957
yas Yos

set ofcoupledODE to find sccs.tlgeste also KEI ülas us

Findinversemapping fort tag and s stay

Plugin u to find the final solution umy and insert solution inproblem to
check it



Unfortunately depending on the problem a stepof themethodnightnot workand
theremight not evenbe a solution

Obstacles towards

global solution
Solution might blow upinfinite time

Ii Characteristics intersect initial curve mon them once

Iii Characteristics intersectwitheach other

Er If vectorfieldab vanishes at somepoint

thereexists a unique

Hopefully however there's a way to checkwhether I solution before starting
to solveeverything

Existence and Assume I sock sit the transversality conditionholdsthen
Uniqueness Theorem solution n oftheCauchy problem defined in a neighborhood

of 20,50 Yoso
NoteThismeans for a least alittletime therewillbe astrongsolution wheretheinitialcondition is transverse
to the characteristics Soexistana uniqueness mightnothold ft maybeonlyupuntilacritical timgo

Transversality
904 blxod.yok.ua

J der
Condition toll das yo

a as blas Recall

der M MI
dasV0.5 day as 1 ad be

L
O for some s nosolutionexistsfor

thats

FO forsome s solutionexistsfor
that s



Graphically
ö initialcurve tangent is

aretheytransverse I nottangential
Glas ifso the characteristics can propagate

informationawayfromtheinitialcurvejig
o

Remember no
characteristics tagut is y surface

Example 1



2.2 Conservation Laws C L leg electriccharge
people

Fancyname for PDEsdescribingthe evolutionof conserved quantities
We use x as a spatial variable and y a temporal variable so y 0

General We look for um y Rx 0,0 IRsuchthat
Formulation fifth fluxboth either nyt FA O

are

egeln or Ugt Chu 0 cal du Fu

C L often come withqgijitialfg.fi un o het

CK C
Example uytcux owith.ee R is the transport equation Fat en

UgtUUx O
CK U

is the Burger equation Flut zu
Turns out these type of problems i e incl initialdata can be solvedthanks to
our belovedmethod of characteristics since they are 1st Order QuasilinearPDEs

To helpthe study of such equations we notice thefollowing

The characteristicequations an of the form Gate Cat with 215 5

Yt 1 with gos O

Ü O with üolsths

The characteristics an straight eins gesittet
so fixed s variable t

sch t linearfunctionofy



ucxy hlx ccucx.gs y is an implicit solution to the problem
4 implicit solution iswhenthesolution
of a depends on u itself

If a look at the transversality condition u seethat

F
t Yt
z g

der Y EA O

By the existann theorem theseequations always have a localsolution
But and this is when it gets spicythis solution might onlyholdup
until the critical time yo

Critical time It is defined by

The idea ofthis 1

Jc infformula isto see when
se IR C no o c uol.no sthe derivativeof the

solution blowsup i e when
therea discontinuities Equivalently we can write
If this are no discontinuities in
a thentheresalso nogo

go figfdsldfulucs.at
Notey o otherwise itcannotbe a time

Infimum The infimum is thegreatest lowerbound

Let Scp be a set a lowerbound is any element acps.hr

a EX fzes

The infls y if yea when a is any lower
boundof S

Eg Let P IN S 5 7,10 then1,23,45amlower
bounds but 5 is the highest lowerbound

infle 0 inf E 4
KEIR KERI 2 0



If you the strong solution only holds up to try Kompression wave

If y Ö the strongsolution holds forall y o expansion wave

Rankine
Flut Fu

Hugoniot
Condition Dt at n

Solutions y that satisfy the RH Condition are called
shock waves

If we then integrate yyw.r.ly we get a border fly Then

um g ü zog
ggbelowright

To make sure a border really is a good one it must satisfy
the entropy condition

Entropy
condition

4 Becca

Example 2

Example 3



3 2nd Order Linear PDEs
3.1 Classification

In this lectureyouonly looked at PDEsof max 2 variables The generalform
of 2ndOrder Linear PDEs is

Not

LINEÜEYEETE 9 abadelig an

leadingterm

functions of x y
Wetäreitudging linear

principalpart equations not quasilinear

Given a point Hoy the discriminant is

8 L Yo yo Bao y alto yo Cayo

The discriminant helps us to define the typesof2nd order PDEs as

hyperbolic

parabolic

Ö Yo 69 Uyy Uxx 0 war ey

if Ö L Koyo O le g 4g Ux 0 heat eqn

elliptic if 8 L Cx yo o eg Ux ayy 0 Laplaceegal

Since thisdefinitiondepends on the point we chooseGogol the PDE is
classified only locally itmayvary on different parts of the plane x y



2ndOrderLinear PDEs
wave equation

7boundary separation
conditions friable NY

no r

no no homogenous

nun

Canuse Findparticular Is Lapham
symmetryto

i Ö

eliminateBC Of Domain
circular

es

iii
Ifnecessary

problem boundarysplitting
mogeneo diplembert withsuitable Bounce full auction

s

Alembert on fange If neededadd
superposition then

6
96 harmonic polynomial use standard

principle tofulfillconditionfor
homogineous existence summaryand

plugin boundary
solveinboth
homogeneousdirection

conditions tofind
PDE M Jes coefficients

separatelyaddup

Findparticularsolution solutions
Don'tforgetthatyou'rewhat solvesthe

inhomogeneity lookingfor lnorfo orkEY.ph
Solvefor v a

www.re.us fj.rB.a

Es
EEAsingse

Mixed

NeumannDirichlet

X.cz
zoAcosCEheatTnHI etEI Dothewhole

n PDEand solvefor IYYnsertu
IT.MN

www.T AncoslEctl BnsinCE'tverynofTn separately



3.2 The wave equation hyperbolic

The homogeneous candy problem looks like

SUE EUN O

Ula O fa
also a ge

In opposition to the M.o.li finding a solution to such the Cauchy

problem isquite straightforward

D'Alembert
rect

Formula for
acht FACH flach

homogenous z agisids
war equation

It's possible to extendthis formula to nonkomogeneous problems however let's first
look at afew properties ofthesolutionof the waveequation

The solution to the war equation can bedecomposedin aforwardand a

backward travelling wave i e UME Flac at Gatt
Eu Tkward

Howards positivex towardsnegativx

A solution is a Generalized Solution of the wave equation
if fat and get are piecewise continuous functions This way
u is alsopiecewise continuous

Wecall the characteristics the lines parametrized by
octet L and sc ct ß with aß ER On theselines
uca.tl is constant on these lines
singularities propagate along the characteristics



This am be seen on the following surface plot of a solution

his constant along singularitiesfollow
thecharacteristics thecharacteristics

a Er IEEE

NoteThesamegraph canbevisualised as a 2Dgraphwith t representing timeIt is more intuitivewhen
we thinkoftimeas theseconddimension

animation availableonthe
website

Domain of Thesolution in Ko y depends on at
dependence flxotctd.ffo c.to and to

g in the interval Ixocto.xotc.to
1 4x to tooto

Region of All points satisfying x ctsb
auch

1

influence are dependant on the initialcondition on
the interval la b
So ifwe change the I C inside la b onlypoint
intheregion ofinfluence will be affected

Symmetry of Let fand gen be specially 189
periodic

functions

wave equation wr.t.sc
then so is a la t



This property can helpus solve wave equations with boundary conditions

See exercise 6.3fromthisyears exerin sheets

Example 4



D'Alembert's Now we're readyfor the inhomogeneous wave equation
Formula for The solution to the inhomogeneous Cauchy problem

inhomogeneous

wenn 5UH Ol FAI ER

exists and is given by

um flxtchjflxchyffjgads ffjjj.tldesdt
Ingnipigneition

Although it's nice to have a single formula for all problems of this
sort sometimes it's not super convenient to compute the last termBut
in many cases it'spossible to shortcutthetedious computation by applying
the principle of superposition

So basically if we
find one particularsolution v
we can definewe u u and the Cauchy problem will become

WE C Wxx UTE CU xx VAT CK O

SW XG UN o V x d fa vlt o

Wft o Ut XD VEX0 GE VEHo

The problem is homogeneous and we can some it with homogenousd'Alember

Finally we find a wer

This superposition technique is especially effective if the inhomogeneity
consists of the addition of two functionsof one variable Fax t fisch



Uniqueness of the solution to Gute
EU FG t XER te o

the solution of UCx ok fat ER
the waveequation Uta Ol ga ER
theorem

is 49

Theproof is quite neatandnot too difficult so have a lookat it in the
lecturenotes ifyouhave a bit of time

Example 5

Sometimes however using d'Alembert cannot help ustosolvethe waveequationwith
boundary conditionsButwe're in luck introduce the separation ofvariables
Here thetypeofproblem wewillsolve butbeforethatwe willquickly introducetheheatequation

Wave equation

condition

Et cum o

with boundary also o fan
uebe a get

a lo t ul H O Dirichlet
oneof udo t ux ht o von Neumann

or mixed



3.3 Heat equation parabolic

The general formulation ofthis homogeneous 2ndorder linear PDE is

Ut K Un O

It is often accompanied by a setof boundary conditions

Ut KUH O A HE O L x O o

Initialdata alt o
faulo

1 Dirichlet
Boundarycondition oneof

o

uxlatl uxll.tt o von Neumann

Wewill see later on howto solve the heat equation Spoiler Separation ofvariable

Boundary t

µ

ja
4 Karo

Theboundarydpa isdefinedas
dpQEKOI DULO.toxDD OKiii

But it couldalsobeinUntilnow weonlysolved
onedimensionalheatequations

Uniqueness of Ut KOU fDirichletproblemfor
Q

has a unique solution

the heat equation on CanonU lt D h
On D



3 4 Laplace and Poisson Equation led.ph
Both Laplace andPoisson equations use the Laplaceoperator

Du Du D Du TEILE FEUri

As we limit ourselves to 2 variables in this course we define the Laplace
equation as

DUCKy cheatayy 0

Any function that solves the Laplaceequation is a Harmonic function

The PoissonEquation on the other hand is justthe inhomogeneous generalization
of the Laplace equation

Ou la y flog y

As for hyperbolic wann and parabolic heut equations we can define a
Problem Only now we've traded our time variable t for another special
variable y This means therewill be no initial condition but the boundaries
will now be in 2D insteadof on one axis a my
This boundary is noted as OD

This means inside a domain DER the PoissonKaplan D
equatin i true

EDU f CHy My ED One
an

and on its border u must match some boundary
D OD U D

condition either



Dirichlet absy glay A gEOD

VonNeumann dnulay F Fü gag Ag EOD

Third Kind ucyyltalayldnuca.gl guy g EOD

Separation of variables is the weapon ofchoice when solving theLaplace
equation



4 Separation of variables
It is a methodto solve2nd Oder linear PDEs heat ware Laplace equation

and it accommodates for boundary conditions spatial restrictioneg ulxo.tl o

Contrary to previous solving methods eg d'Alembert formula it is not a

Paid
but requires ago aing

opthwmathem.twe will seek non trivial solutions i e solution umH 0 Indeed U O is

always solution ofhomogeneous equations but honestly it's a not very interestingsolutio

4.1 For the homogeneous heat and wave equation

The formalderivation isfoundin the lecturescript chap 5.1 Wer willsimply
go over multipleexamples to familiarize ourselves withthis solvingmethod

Identifythe Problem PDE BoundaryCondition Initial Data

Apply separationofvariables to PDE u XuTAI andextractODES
ODEfor X ODEfor T

Find general solutionforX 210Make a case distinctionfor 7
Find generalsolutionfor T using I from above

Formulate general solution for ucx.tl XT
Usethe initialcondition todetermine the coefficients
Andfinally enjoy and write the fullsolution down

🥱



Inhomogeneous If theproblemhas inhomogeneous boundary conditions
Boundary conditions eg Y find a w thatsolvesthis inhomogeneity we

and subtract it from thethePDE ru w Then solvefor
and finally www

Example 6

Although you
should really understand thestep taken above to come to the solution

there are some shortcuts you cantake ifyourecognize the type ofCauchy problem
For the homogeneous wave andheat equations

Heat Ut du o Wave Ute Cat 0
boundary conditions

un o fei
boundary conditions

UNO FEI
41707 ga

The formof the general solution of T depends on the type of equation

TE CAT TE EAT

Tn e III Tn Ancos niet Basin Ic

Then the form of the general solutionfor X depends on the boundary

condition a lo t all t 0 Dirichlet

4 0 t Ux lit o von Neumann

Ux at U L H O or a lo t uxll.tl

D.BE Xn sin Ex h 1,23
fUNBC In los Ex n 0,12,3

Combining both we get



Heat equation

µ Esin E AnasLECH Bus DIB L UHH TEAnsin II x e KNIE

N.B.LUH EB.EEBnatte um

AEIIILEIIIjj
nsi.gg

The last thing needed are the coefficients AnandBu Wefind them
either by extracting them directly from the initialcondition or by

Fourier
expansion z

An 2 fasinkExlok
Bn En ge sin Ex dx

II

iii

Please use these shortcuts with caution and convince yourself

theymake sense by computing themfrom the beginning at least one

before you start using them There's a high probability that I've
writtenhas some mistakes somewhere so be aware don't worry I checked it
butstill stay on yourguard



4 2 Inhomogeneous heat war equation

Themethodfor inhomogeneous equations is a little different

IdentifytheProblem PDE BoundaryCondition Initial Data

Apply separationofvariables to homogenousPDE u XuTel andextract ODE
ODEfor X LODERT

Find general solutionforX 210Make a case distinctionfor 7
Find generalsolutionfor T using I from above

Formulate general solution for ucx.tl XTwiththebasisfound in
Insert in inhomogeneous PDEand use the initialcondition to determine
the coefficients
Andfinally enjoy and write the fullsolution down

Example 7



4.3 Laplace equation on rectangular domains

Solving a problem where two opposite sich of the boundary
condition is zero is doable So we use linearity ofthe Laplanequation to split
a problem into two subproblems

Boundary d b un o d Uh

splitting
O

c
uk

ox

Solveproblems for Un and Un or Ü and a with separationof variables U XY
In the homogeneous direction x for a Myof a
DBC X AnsinAnCx al A ffY Ansin Aly c

NBL X Ancos Alt al
Y Ancos only c

In the otherdirection
DBL Y CnsinkAnly c Dnsink Anly d

X Cnsinhlfnlx.at tDnsinh Anlx b
NBL Y Cncosh Fnly d Dncosh Anly d

Example 9X Crash Aula al Dncosh Fnla b

Existenceof A necessary condition for the existence of a solution to the
Solution to Neumann problem is

theNeumann
problem Sonn fpgcaccst.yisDds_

ffCaysdoedyDwoutoDIt

insideD.Forthe Laplace equation the righthand side is O



Existenceof A necessary condition for the existence of a solution to the
Solution to Dirichlet problem is continuityof the boundary
the Dirichlet
Problem

If in addition the problem is on a rectangular domain these equations simplifyto
i
d TUg kNeumann

d b d b

c T.EEüGonunds gdyxdkdac tfdy dhd.ci0

a b

Proof Gourds ICE lila 1cgD d IM li dg Iui 1 ldx
uylascldxtugbsdidxIuxla

g
dytfuxcb.jo

y hdx jkdx ffdy fgdy

Dirichlet is
d 0

U k
oTheboundary must be continuousinparticular

9lbdEhebd
c OFF g

It is possible that the conditions presented are not met in that case

ii
I

Use linearityand introduce a harmonic polynomial play aotasctazytasscytaylugtouu.atpa Thenfind thecoefficients a so that the condition is metThen
solvetheproblem for ü Finallyfind P

seeSerie 11 2017exercise3

On f
D boundedDirichletproblemfor in OD

thePoisson equation
Then the problem has at most one Solution

UECD nCD



4.4 Laplace equation on circular domain

Insteadof being a rectangle the domain is now a circle aka circulardomain

Ball ofradius a andcentred in zero
R

D Ba OF Ea O Elo o
Ou

In that caseit's really not that much more complicated The onlyextrastep is to
changethe coordinates Insteadof workingwith candy we work with Oand r

The Laplaceequation in polar coordinates is

Du WrrtfWrAWoo
where

W r o UCros0 rsind klar 0 yera W Ba IR

Then we can on theseparation ofvariables again

Inserting in the Laplace equation and with the helpof Periodicity 01 041
get a generalsolution HÄ H

wir Ol Co Fsr Ancos no Basin no

And as per usual you can simply
insert the boundary conditions tofind the

coefficients AnandBn

Example 8



There are other types of Boundaries the proof is similarbut it's quite
unlikely that the other types 2 4 will come to the exam and if it comes you
can simply insert the boundary condition in the general solution to find
the coefficients and solvetheproblemexactly

Type 1 D OERER OKO ZH oh
Ball Boundaryconditions a Rtl an

Öl zu
Periodicity

ONO
WIROffa given

Solution wer O Cote r Ansinnol Bros no

Insert BC and find coefficients

Type2 5 RIETER 040221T an

Ring Boundaryconditions 01 041
periodicity

Öl ka p

R

WIR Off9
given on o

WIRO go
Solution

wir Ol E Flog F r Ansin no Bncos no

rInsinnolt Ducos no



Typo3 D OSTER 0 048 asCircle
Boundary conditions WCRiOkh

lSechmInthiscaseweonlylookatN.B.CdDB.Csoiy R

DB 01 0

g p

N.BE do

N O

wcro FIAns.info rFwcr ol AonEAncospIdr

Type4 5 RIETER 00 83 n

Ring Boundaryconditions WCRiOl K

lsectionwcRz.O40
fInthicasewelookat NBC and DBL

DB OKO N.B.lu 01 0

HI O ÄH O

wcro FIAns.info rFwcr ol AonEAncospIdr



5 Maximum principles
Beforetalkingabout mir max valves of a function you should remember in 2D

Gogo is an extremum if BulkYo Ü 8 D

Gogo is a maximum if it is an extremumund Outroy EO

OR axt ayybgO
OR D2ubco.yo7EO

ogaisaminimumipitisan.extrennen
OR Uxx ayy 70

This alsomeans in order for these principles tobe valid theymustbe C
2times continuously differentiable

Weak Let Dbe a bounded domain and a xy e nCCD a

Maximum harmonic Function

Minimum actin will takeits maximum on OD
DPrinciple

maxus mag
u max

D JD

The same can besaidfor the minimum
D ODU D

Strong het uf 4 be harmonic inD and u reaches its maximum
Maximum insideD then u is constant on all D
Minimum

Principle The same can be said for the minimum



Mean Let acty be harmonic in D and let Baltog ED
Value
Theorem

be a Ball of radius R centered in Hoyo Then

21T

ulxayotzfulxsiyolds ffulxotkcosayotRs.in9 do
dBaltoYo

Surprisingly the inverse also holds so if a is satisfied in somdomain D then
u isharmonicin thatdomain

Maximum het u solve ur Kou in Q forsome k o
principle for Assumethat Dis bounded
homogeneous Then u achives its maximum landminimum on Opa
heatequation

Example 10


