Musterlösung Serie 15

POLYNOME, EIGENVEKTOREN/-WERTE

1. Seien \mathbb{K} ein Körper, V ein \mathbb{K} -Vektorraum, und $T:V\to V$ eine lineare Abbildung. Zeige, dass das characteristische Polynom von T wohl-definiert ist, das heißt, dass es unabhängig von der Wahl der Basis ist.

Lösung: Seien A und B zwei Matrixdarstellungen der linearen Abbildung T bezüglich der Basen \mathcal{B} und \mathcal{C} von V, sodass

$$A = P^{-1}BP$$

mit $P \in M_{n \times n}(\mathbb{K})$ invertierbar. Jetzt gilt

$$\chi_B(\lambda) = \det(B - \lambda I_n)$$

$$= \det(I_n(B - \lambda I_n))$$

$$= \det(P^{-1}P(B - \lambda I_n))$$

$$= \det(P^{-1}(B - \lambda I_n)P)$$

$$= \det(P^{-1}BP - \lambda I_n)$$

$$= \det(A - \lambda I_n)$$

$$= \chi_A(\lambda).$$

We used the fact that for matrices $M, N \in M_{n \times n}(\mathbb{K})$, $\det(MN) = \det(NM)$ (Satz 10.3.2 des Skripts).

- 2. Gegeben sei die Matrix $A = \begin{pmatrix} 3 & 0 & -2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{pmatrix}$ über \mathbb{R} .
 - (a) Bestimme das charakteristische Polynom von A.
 - (b) Bestimme die Eigenwerte von A.

Lösung:

(a) Wir berechnen mit der Determinantenformel für 3×3 -Matrizen:

$$\operatorname{char}_{A}(X) = \det (X \cdot I_{3} - A) = \det \begin{pmatrix} X - 3 & 0 & 2 \\ -2 & X & 2 \\ 0 & -1 & X - 1 \end{pmatrix}$$
$$= (X - 3)X(X - 1) + 4 + 2(X - 3)$$
$$= X^{3} - 4X^{2} + 5X - 2.$$

(b) Da das Polynom normiert ist und Koeffizienten in $\mathbb Z$ hat, sind alle Nullstellen in $\mathbb Q$ schon in $\mathbb Z$ und Teiler des konstanten Koeffizienten -2. Probieren liefert die Nullstelle X=1. Mit Polynomdivision und erneutem Raten (oder dann der Mitternachtsformel) folgt

$$char_A(X) = (X-1)(X^2 - 3X + 2) = (X-1)^2(X-2).$$

Daher sind die Eigenwerte $\lambda_1 := 1$ und $\lambda_2 := 2$.

3. Für eine beliebige invertierbare $n \times n$ -Matrix A, drücke das charakteristische Polynom von A^{-1} mit Hilfe des charakteristischen Polynoms von A aus.

Lösung: Es gilt

$$\operatorname{char}_{A^{-1}}(X) = \det \left(X \cdot I_n - A^{-1} \right)$$

$$= \det \left((-X) \cdot A^{-1} \cdot \left(X^{-1} \cdot I_n - A \right) \right)$$

$$= (-X)^n \det \left(A^{-1} \right) \det \left(X^{-1} \cdot I_n - A \right)$$

$$= \frac{(-X)^n}{\det(A)} \cdot \operatorname{char}_A \left(X^{-1} \right).$$

4. Sei K ein Körper. Zeige, dass für beliebigen Martrizen $A, B \in M_{n \times n}(\mathbb{K})$

$$Tr(AB) = Tr(BA)$$

gilt.

Lösung: Sei $AB =: C = (c_{ij})_{1 \leq i,j \leq n}$. Die Diagonaleinträge von C sind gegeben durch

$$c_{kk} = \sum_{i=1}^{n} a_{ki} b_{ik}$$

für $1 \le k \le n$. Daher ergibt sich

$$\operatorname{Tr}(C) = \sum_{k=1}^{n} c_{kk}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} a_{ki} b_{ik}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} b_{ik} a_{ki}$$

$$= \operatorname{Tr}(BA).$$

5. Sei A eine nilpotente $n \times n$ -Matrix, das heisst eine, für die ein $m \ge 1$ existiert mit $A^m = O_{n \times n}$. Zeige, dass der einzige mögliche Eigenwert von A gleich 0 ist. Wann genau ist 0 ein Eigenwert von A?

Lösung: Sei $\lambda \in K$ ein Eigenwert von A mit Eigenvektor v. Dann gilt $Av = \lambda v$, und durch Induktion folgt $A^k v = \lambda^k v$ für alle $k \ge 0$. Nach Voraussetzung ist dann $\lambda^m v = A^m v = Ov = 0$. Wegen $v \ne 0$ folgt daraus $\lambda = 0$. Also ist $\lambda = 0$ der einzige mögliche Eigenwert von A.

Wir zeigen, dass 0 immer ein Eigenwert von A ist. Wenn A invertierbar wäre, würde die Matrix A^m das Produkt invertierbarer Matrizen sein, was im Widerspruch zu $A^m = O$ steht. Folglich ist A nicht invertierbar. Dies impliziert, dass (die Abbildung "Linksmultiplikation mit") A einen nicht-trivialen Kernel hat und daher 0 ein Eigenwert von A ist.

Aliter: Für $n \ge 1$ ist $A^0 = I_n \ne O$. Die kleinste natürliche Zahl $m \ge 1$ mit $A^m = 0$ erfüllt daher $A^{m-1} \ne 0$. Es gibt daher einen Vektor $v \in K^n$ mit $w := A^{m-1}v \ne 0$. Wegen

$$Aw = A^m w = 0 \cdot w = 0$$

ist dann w ein Eigenvektor zu A mit Eigenwert 0.

6. Eine komplexe Zahl z wird als n-ten Wurzel der Einheit bezeichnet, wenn $z^n - 1 = 0$ ist, und ist eine primitive n-ten Wurzel der Einheit, wenn zusätzlich

$$z^m - 1 \neq 0$$
, für alle $1 \leq m < n$

gilt. Das *n*-te *Kreisteilungspolynom*, $\Phi_n(z)$, ist das jenige ganzzahlige Polynom größten Grades mit Leitkoeffizient 1, das $z^n - 1$ teilt, jedoch zu allen $z^d - 1$ mit $1 \le d < n$ teilerfremd ist.

- (a) Zeige, dass die Wurzeln von $\Phi_n(z)$ genau die primitive *n*-ten Wurzeln der Einheit sind.
- (b) Zeige, dass, wenn n>1 ist, die Zahl $\zeta_n=e^{2\pi i/n}$ eine primitive Wurzel der Einheit ist.
- (c) Gib die Zerlegung in Linearfaktoren von $\Phi_n(z)$ in $\mathbb{C}[z]$.
- (d) Gib die Zerlegung von $z^n 1$ in Kreisteilungspolynome.

Lösung:

(a) Da $\Phi_n(z) \mid (z^n - 1)$ gilt, müssen die Nullstellen von $\Phi_n(z)$ eine Teilmenge der n-ten Einheitswurzeln sein. Angenommen, zum Widerspruch, dass einige $\xi \in \mathbb{C}$ eine Nullstelle von $\Phi_n(z)$ sind, aber keine primitive n-te Einheitswurzel sind. Dann existiert ein $1 \leq m < n$ so dass $\xi^m - 1 = 0$. Anders ausgedrückt gilt

$$(z - \xi) | z^m - 1$$
 und $(z - \xi) | \Phi_n(z)$.

Dies steht im Widerspruch zur Tatsache, dass $\Phi_n(z)$ keine Faktoren mit z^m-1 für $1 \leq m < n$ teilt. Daher haben wir gezeigt, dass wenn $\xi \in \mathbb{C}$ eine Nullstelle von $\Phi_n(z)$ ist, muss sie eine primitive Einheitswurzel sein.

Andererseits zeigen wir, dass alle primitiven n-ten Einheitswurzeln Nullstellen von $\Phi_n(z)$ sind. Sei ξ eine davon. Dann teilt $(z-\xi)$ zwar z^n-1 , teilt jedoch nicht z^m-1 für $1 \le m < n$. Angenommen, zum Widerspruch, dass es $\Phi_n(z)$ nicht teilt. Dann teilt $(x-\xi)\Phi_n(z)$ immer noch z^n-1 , teilt aber keine Faktoren mit z^m-1 für $1 \le m < n$ und

$$\deg((x-\xi)\Phi_n(z)) = \deg(\Phi_n(z)) + 1 > \deg(\Phi_n(z)),$$

was im Widerspruch zur Maximalitätsannahme von $\deg(\Phi_n(z))$ steht. Damit ist der Beweis abgeschlossen.

(b) Betrachten Sie $f(x) := e^{2\pi i x} \in \mathbb{C} \setminus \mathbb{R}$. Diese Funktion ist 1-periodisch. Anders ausgedrückt gilt

$$f(x+1) = f(x), \ \forall x \in \mathbb{R}.$$

Daher hat jede komplexe Zahl im Bild ein Urbild in (0,1]. Außerdem wissen wir, dass $f(x) \in \mathbb{C} \setminus \mathbb{R}$ für $x \notin \frac{1}{2}\mathbb{Z}$ und dass 1 das einzige Urbild von 1 in (0,1] ist. Wir schließen leicht, dass n das einzige Urbild von 1 in (0,n] durch die Funktion

$$g(x) := f\left(\frac{x}{n}\right) = e^{2\pi i x/n}$$

ist. Das zeigt, dass $\zeta = e^{2\pi i/n}$ eine primitive n-te Einheitswurzel ist.

(c) Wir folgern aus (b), dass $\zeta^k = e^{2\pi i k/n}$ genau dann eine primitive n-te Einheitswurzel ist, wenn $\gcd(k,n)=1$. Das Lemma von Bézout besagt, dass es $u,v\in\mathbb{Z}$ gibt, so dass un+vk=1. Dies impliziert, dass nk das kleinste Vielfache von k ist, das auch durch n teilbar ist. Mit (b) zeigt dies, dass es eine primitive Einheitswurzel ist. Daher ergibt sich durch (a),

$$\Phi_n(z) = \prod_{\substack{1 \le k \le n \\ \gcd(k,n)=1}} (z - e^{2\pi i k/n}).$$

(d) Wir werden zeigen, dass

$$z^n - 1 = \prod_{d|n} \Phi_d(z).$$

Die Menge

$$\{\zeta^k = e^{2\pi i k/n} \mid k \in \{1, 2, \dots, n\}\}$$

enthält n Elemente, die alle n-te Einheitswurzeln sind. Da z^n-1 höchstens n Nullstellen hat, enthält diese Menge alle seine Nullstellen und umgekehrt. Es folgt, dass

$$z^{n} - 1 = \prod_{k=1}^{n} (z - e^{2\pi i k/n}) = \prod_{\substack{d \mid n \\ \gcd(\ell, n) = d}} (z - e^{2\pi i \ell/n}) = \prod_{\substack{d \mid n \\ \gcd(\ell, n) = d}} \Phi_{n/d}(z) = \prod_{\substack{d \mid n \\ d \mid n}} \Phi_{d}(z).$$

- 7. Seien V ein K-Vektorraum und $F, G \in \text{End}(V)$. Zeige:
 - (a) Falls $v \in V$ ein Eigenvektor von $F \circ G$ zum Eigenwert λ ist und $G(v) \neq 0$, dann ist G(v) ein Eigenvektor von $G \circ F$ zum Eigenwert λ .
 - (b) Ist V endlichdimensional, so haben $F \circ G$ und $G \circ F$ die gleichen Eigenwerte.
 - (c) Gib ein Gegenbeispiel zu (b) an, falls V nicht endlichdimensional ist.

Lösung:

(a) Sei $v \in V$ ein Eigenvektor von $F \circ G$ zum Eigenwert λ mit $G(v) \neq 0$. Dann gilt

$$G \circ F(G(v)) = G(F \circ G(v)) = G(\lambda v) = \lambda G(v).$$

Also ist G(v) auch ein Eigenvektor von $G \circ F$ zum Eigenwert λ .

(b) Sei (λ, v) ein Eigenvektor-Eigenwert-Paar von $F \circ G$. Wir unterscheiden die Fälle $G(v) \neq 0$ und G(v) = 0.

Wenn $G(v) \neq 0$ ist, dann ist λ gemäß (a) ein Eigenwert von $G \circ F$.

Wenn G(v)=0 ist, dann gilt $\lambda v=(F\circ G)(v)=F(0)=0$. Also ist $\lambda=0$ und wir müssen zeigen, dass 0 ein Eigenwert von $G\circ F$ ist. Dies ist äquivalent dazu, dass $G\circ F$ einen nicht-trivialen Kernel hat, was genau dann der Fall ist, wenn $G\circ F$ Rang $<\dim(V)$ hat. Nun gilt aber

$$\operatorname{rank}(G \circ F) \leq \min(\operatorname{rank}(G), \operatorname{rank}(F)) < \dim(V),$$

da G gemäß der Annahme ein Endomorphismus von V mit nicht-trivialem Kern ist. Daher ist 0 ein Eigenwert von $G \circ F$.

Dies zeigt, dass jeder Eigenwert von $F \circ G$ ein Eigenwert von $G \circ F$ ist. Die umgekehrte Inklusion ergibt sich durch Vertauschen von G und F wie oben.

(c) Sei $V=\mathbb{R}^{\mathbb{N}}:=\left\{(a_n)_{n\geqslant 0}\right\}$ der Vektorraum aller Folgen in \mathbb{R} . Definiere die linearen Abbildungen $F,G:V\to V$ durch

$$F: (a_0, a_1, a_2, \ldots) \mapsto (0, a_1, a_2, a_3, \ldots)$$

 $G: (a_0, a_1, a_2, \ldots) \mapsto (a_1, a_2, \ldots)$.

Dann ist $G \circ F$ die Identität mit dem einzigen Eigenwert 1, wohingegen $F \circ G$ wegen

$$(F \circ G)(1, 0, 0, \cdots) = (0, 0, 0, \cdots)$$

auch 0 als Eigenwert besitzt.