Musterlösung Serie 24

NORMALE/SELBSTADJUNGIERTE ABBILDUNGEN, SPEKTRALTHEORIE

1. Betrachte die reelle symmetrische Matrix

$$G := \begin{pmatrix} 3 & -2 & 1 & -2 \\ -2 & 3 & -2 & 1 \\ 1 & -2 & 3 & -2 \\ -2 & 1 & -2 & 3 \end{pmatrix}$$

Führe für G eine Hauptachsentransformation durch, d. h., finde eine orthogonale Matrix S, so dass S^TGS eine Diagonalmatrix ist.

Hinweis: Alle Eigenwerte von G sind ganzzahlig.

 $L\ddot{o}sung$: Das charakteristische Polynom von G ist

$$P_G(X) = X^4 - 12v^3 + 36X^2 - 32X = X(X^3 - 12X^2 + 36X - 32).$$

Aus dieser Faktorisierung ersehen wir, dass G den Eigenwert 0 besitzt und das Produkt der übrigen Eigenwerte gleich 32 ist. Nach dem Hinweis kommen nur Teiler von 32 als weitere Eigenwerte von G in Frage. Durch Testen der Kandidaten $\pm 1, 2, 4, 8, 16, 32$ ergibt sich die Faktorisierung

$$P_G(X) = X(X-2)^2(X-8).$$

Mit Vielfachheiten gerechnet hat G also die Eigenwerte

$$\lambda_1 := 0, \quad \lambda_2 := \lambda_3 := 2, \quad \lambda_4 := 8.$$

Die zugehörigen Eigenvektoren ergeben sich zum Beispiel als

$$v_1 := \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \quad v_3 := \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \quad v_4 := \begin{pmatrix} -1 \\ 1 \\ -1 \\ 1 \end{pmatrix}$$

besitzt. Durch Normalisieren der Vektoren v_1 und v_4 und durch Anwenden des Gram-Schmidt-Verfahrens auf v_2 und v_3 erhalten wir die folgende Orthonormalbasis von Eigenvektoren:

$$\begin{split} &\tilde{v}_1 := v_1 / \left\| v_1 \right\| = v_1 / 2 \\ &\tilde{v}_2 := v_2 / \left\| v_2 \right\| = v_2 / \sqrt{2} \\ &\tilde{v}_3 := \frac{v_3 - \left\langle v_3, v_2 / \left\| v_2 \right\| \right\rangle}{\left\| v_3 - \left\langle v_3, v_2 / \left\| v_2 \right\| \right\rangle \right\|} = \frac{v_3}{\left\| v_3 \right\|} = v_3 / \sqrt{2} \\ &\tilde{v}_4 := v_4 / \left\| v_4 \right\| = v_4 / 2 \,. \end{split}$$

Definieren wir also S als die Matrix mit den Spalten $\tilde{v}_1, \dots, \tilde{v}_4$,

$$S := \begin{pmatrix} 1/2 & 0 & 1/\sqrt{2} & -1/2 \\ 1/2 & 1/\sqrt{2} & 0 & 1/2 \\ 1/2 & 0 & -1/\sqrt{2} & -1/2 \\ 1/2 & -1/\sqrt{2} & 0 & 1/2 \end{pmatrix},$$

so ist S orthogonal mit

$$S^T G S = S^{-1} G S = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 8 \end{pmatrix}.$$

2. Angenommen, $S, T \in \text{Hom}(V)$ sind selbstadjungiert. Beweisen Sie, dass ST genau dann selbstadjungiert ist, wenn ST = TS.

 $L\ddot{o}sung$: Wir haben $(ST)^* = T^*S^*$. Also ist ST selbstadjungiert genau dann, wenn

$$T^*S^* = ST$$

Da S und T selbstadjungiert sind, ist die obige Gleichung äquivalent zu ST = TS.

- 3. Seien V ein endlich-dimensionaler unitärer Vektorraum und $T \in \operatorname{End}(V)$ ein normaler Operator. Für einen Unterraum $W \subseteq V$ schreiben wir P_W für die orthogonale Projektion auf W.
 - (a) Beweise:

Theorem. Es existieren endlich viele komplexe Zahlen $\lambda_1, \ldots, \lambda_k \in \mathbb{C}$, und paarweise orthogonale Unterräume W_1, \ldots, W_k von V, sodass

$$T = \lambda_1 P_{W_1} + \dots + \lambda_k P_{W_k}.$$

(b) Zeige, dass für jeden Unterraum U von V die Projektion P_U selbstadjungiert ist.

Lösung:

(a) Nach dem Spektralsatz für unitäre Vektorräume ist T is orthogonal diagonalisierbar. Für $j=1,\ldots,k$ seinen λ_j die Eigenwerte von T, und sei $\mathcal{B}=\{v_1,v_2,\ldots,v_n\}$ eine Orthonormalbasis von T, sodass für $1\leqslant \ell_1<\ell_2<\cdots<\ell_k=n$ gilt

$$\operatorname{Eig}_{T}(\lambda_{1}) = \operatorname{Sp}(v_{1}, \dots, v_{\ell_{1}}),$$

$$\operatorname{Eig}_{T}(\lambda_{j}) = \operatorname{Sp}(v_{\ell_{j-1}+1}, \dots, v_{\ell_{j}}), \quad j = 2, \dots, k.$$

Wir zeigen, dass das Theorem mit $W_j = \operatorname{Eig}_T(\lambda_j)$ für $j = 1, \ldots, k$ gilt Tatsächlich sind, da \mathcal{B} eine Orthogonalbasis ist, die W_j 's automatisch zueinander orthogonal. Betrachte nun $v \in V$ mit $v = \sum_{i=1}^n a_i v_i$. Wir berechnen

$$T(v) = T\left(\sum_{i=1}^{n} a_i v_i\right)$$

$$= \sum_{i=1}^{\ell_1} a_i T(v_i) + \dots + \sum_{i=1}^{\ell_k} a_i T(v_i)$$

$$= \lambda_1 \sum_{i=1}^{\ell_1} a_i v_i + \dots + \lambda_k \sum_{i=\ell_{k-1}+1}^{\ell_k} a_i v_i.$$

Bemerke, dass aus der Orthonormalitätv von \mathcal{B} folgt, dass $a_i = \langle v, v_i \rangle$ ist. Also ist jede der Summen in der letzen Zeile der obigen Gleichung gleich $\lambda_j P_{W_j}(v)$, für $j \in \{1, \ldots, k\}$. Dies zeigt die gewünschte Gleichheit.

(b) Sei $\{u_1, \ldots, u_r\}$ eine Orthonormalbasis von U. Es gilt $P_U^* = P_U$ genau dann wenn für alle $v, w \in V$ gilt

$$\langle P_U(v), w \rangle = \langle v, P_U(w) \rangle.$$

Wir berechnen

$$\langle v, P_U(w) \rangle = \left\langle v, \sum_{i=1}^r \langle w, u_i \rangle w \right\rangle$$

$$= \sum_{i=1}^r \overline{\langle w, u_i \rangle} \langle v, u_1 \rangle$$

$$= \left\langle \sum_{i=1}^r \langle v, u_i \rangle u_i, w \right\rangle$$

$$= \langle P_U(v), w \rangle.$$

4. Beweisen Sie, dass ein normaler Operator auf einem komplexen endlichdimensionalen Inner-Produkt-Raum genau dann selbstadjungiert ist, wenn alle seine Eigenwerte reell sind.

Lösung: Angenommen, $T \in \text{Hom}(V)$ ist selbstadjungiert. Sei $\lambda \in \mathbb{C}$ ein Eigenwert von T mit Eigenvektor v. Dann gilt

$$\lambda = \langle Tv, v \rangle = \langle v, Tv \rangle = \overline{\lambda} \langle v, v \rangle.$$

Daher ist $\lambda = \overline{\lambda}$, also ist λ reell.

Umgekehrt, sei angenommen, dass alle Eigenwerte von T reell sind. Sei e_1, \ldots, e_n eine Orthonormalbasis von Eigenvektoren von T, welche nach dem Komplexen

Spektralsatz existiert. Bezeichne $\lambda_1, \ldots, \lambda_n$ die entsprechenden Eigenwerte. Jeder Vektor $v \in V$ kann als $v = \sum_{i=1}^n a_i e_i$ für einige $a_1, \ldots, a_n \in \mathbb{C}$ geschrieben werden. Dann gilt

$$\langle Tv, v \rangle = \langle \sum_{i=1}^{n} \lambda_i a_i e_i, \sum_{i=1}^{n} a_i e_i \rangle = \sum_{i=1}^{n} \lambda_i |a_i|^2 \in \mathbb{R}.$$

Daher gilt für alle $v \in V$

$$\langle (T - T^*)v, v \rangle = \langle Tv, v \rangle - \langle T^*v, v \rangle = \langle Tv, v \rangle - \overline{\langle Tv, v \rangle} = 0$$

da $\langle Tv, v \rangle \in \mathbb{R}$ für alle $v \in V$. Es folgt, dass $T = T^*$.

5. Angenommen, dass U einen endlich-dimensionalen reellen Vektorraum ist und $T \in \text{Hom}(U)$. Zeigen Sie, dass U eine Basis aus Eigenvektoren hat, genau dann, wenn es ein Inneres Produkt gibt, das U zu einem selbstadjungierten Operator macht.

Lösung: Angenommen, U hat eine Basis $\{e_1, \ldots, e_n\}$ aus Eigenvektoren von T. Wir können ohne Einschränkung der Allgemeinheit davon ausgehen, dass sie normiert sind. Definieren wir

$$\langle \cdot, \cdot \rangle : U \times U \to \mathbb{R}$$

durch

$$\langle a_1e_1+\cdots+a_ne_n,b_1e_1+\cdots+b_ne_n\rangle=\sum_{i=1}^n a_nb_i.$$

Da jeder Vektor in U eindeutig als Linearkombination der e_i geschrieben werden kann, ist diese Funktion wohldefiniert. Darüber hinaus überprüft man leicht, dass diese Funktion ein Inneres Produkt ist. Beachten Sie, dass die e_i bezüglich dieses Produkts orthonormal sind. Das Reelle Spektraltheorem impliziert nun, dass T selbstadjungiert ist.

Der Umkehrschluss folgt direkt aus dem Reellen Spektraltheorem.

6. Das Ziel dieser Übung ist es, den folgenden Satz zu beweisen:

Satz. Sei V ein endlich-dimensionaler komplexer Vektorraum und \mathcal{F} eine nichtleere Menge von kommutierenden normalen Operatoren in $\operatorname{Hom}(V)$. Mit anderen Worten, für alle $A, B \in \mathcal{F}$ gilt AB = BA und $AA^* = A^*A$. Es existiert eine Orthonormalbasis von V, bezeichnet mit $\mathcal{C} = \{v_1, \ldots, v_n\}$, sodass für alle $1 \leq j \leq n$ und für alle $A \in \mathcal{F}$ der Vektor v_j ein Eigenvektor von A ist. Solche Operatoren werden simultan diagonalisierbar genannt.

- (a) Sei U ein linearer Unterraum von V und $A \in \text{Hom}(V)$ mit $AU \subseteq U$. Beweisen Sie, dass A einen Eigenvektor in U hat.
- (b) Sei U ein linearer Unterraum von V und $\mathcal{G} \subset \operatorname{Hom}(V)$ eine Familie von kommutierenden Operatoren, sodass für alle $A \in \mathcal{G}$ gilt $AU \subseteq U$. Beweisen Sie, dass es einen nicht-null Vektor $v \in U$ gibt, der ein Eigenvektor für jedes $A \in \mathcal{G}$ ist.

(c) Verwenden Sie (a) und (b), um den obigen Satz zu beweisen.

Lösung:

(a) Da $AU \subseteq U$, ist die Einschränkung

$$A|_U: U \to U$$

 $u \mapsto A(u)$

wohldefiniert. Da \mathbb{C} algebraisch abgeschlossen ist, existiert ein Eigenwert $\lambda \in \mathbb{C}$ von $A|_U$, und wir bezeichnen mit $w \in U$ einen zugehörigen Eigenvektor. Schließlich haben wir

$$A(w) = A|_{U}(w) = \lambda w.$$

Daher ist w ein Eigenvektor von A in U.

(b) Wir beweisen diese Behauptung durch Induktion über die Dimension von U. Nehmen wir zunächst an, dass $\dim(U) = 1$. Da für alle $A \in \mathcal{G}$, $AU \subseteq U$ gilt, haben wir sofort, dass für jeden nicht-null Vektor $u \in U$ und für jedes $A \in \mathcal{G}$ gilt, dass $Au = \lambda u$ für irgendein $\lambda \in \mathbb{C}$.

Nehmen wir nun an, dass die Behauptung für $1 \leq \dim(U) < k$ bewiesen ist und sei $\dim(U) = k$. Wenn jedes $A \in \mathcal{G}$ ein Vielfaches der Identität ist, sind wir fertig. Andernfalls fixieren wir ein $A \in \mathcal{G}$ so, dass $A \neq \mu$ id für jedes $\mu \in \mathbb{C}$. Nach (a) existiert ein Eigenvektor w von A in U. Sei λ der entsprechende Eigenwert. Definiere

$$U' = \{ v \in U \mid Av = \lambda v \}.$$

Nun ist $\dim(U') < \dim(U)$, da $A \neq \lambda$ id. Für jedes $B \in \mathcal{G}$ gilt dann $BU' \subseteq U'$. Tatsächlich, sei $v \in U'$, dann

$$A(Bv) = B(Av) = \lambda(Bv).$$

Also gibt es nach der Induktionshypothese einen nicht-null Vektor $v_0 \in U'$, der ein Eigenvektor für jedes Element von \mathcal{G} ist.

(c) Sei $V=\mathbb{C}^n$. Nach (b) gibt es einen Vektor v_1 , der ein Eigenvektor für jedes $A\in\mathcal{G}$ ist. Setze $e_1=\frac{v_1}{\|v_1\|}$ und $V_1=\mathrm{LH}(e_1)$. Wir haben in den Vorlesungen gesehen, dass e_1 ebenfalls ein Eigenvektor von A^* für jedes $A\in\mathcal{G}$ ist. Also $AV_1\subseteq V_1$ und, nochmals nach einem Ergebnis aus den Vorlesungen, $AV_1^\perp\subseteq V_1^\perp$ für alle $A\in\mathcal{G}$. Setze $U_1=V_1^\perp$ und benutze (b) in U_1 . Es folgt, dass es einen nicht-null Vektor $v_2\in V_1^\perp$ gibt, der ein Eigenvektor für jedes $A\in\mathcal{G}$ ist. Setze $e_2=\frac{v_2}{\|v_2\|}$ und definiere

$$V_2 = LH(e_1, e_2), \quad U_2 = V_2^{\perp}.$$

Wir beobachten, dass

$$A^*V_2 \subseteq V_2$$
 und $AU_2 \subseteq U_2$, für alle $A \in \mathcal{G}$.

Verfahren Sie ähnlich, bis e_n gefunden ist.

Multiple Choice Fragen.

- 1. Seien A und B komplexe selbstadjungierte $n \times n$ Matrizen, und sei $\lambda \in \mathbb{C}$. Welche der folgenden Aussagen ist im Allgemeinen korrekt?
 - $\checkmark A + B$ ist selbstadjungiert.
 - $\bigcirc \lambda A$ ist selbstadjungiert.
 - $\checkmark \lambda A$ ist normal.

Explanation:

- (a) $(A+B)^* = A^* + B^* = A + B$
- (b) Mit $\lambda = i$ ist $(iA)^* = -iA^* = -iA$ nicht selbstadjungiert.
- (c) Sei $B = \lambda A$. $B^*B = \overline{\lambda}A^*\lambda A = |\lambda|^2 AA = BB^*$.
- 2. Seien A und B komplexe selbstadjungierte $n \times n$ Matrizen, und sei $\lambda \in \mathbb{C}$. Welche der folgenden Aussagen ist im Allgemeinen korrekt?
 - \bigcirc AB ist selbstadjungiert.
 - $\checkmark AB + BA$ ist selbstadjungiert.
 - $\checkmark AB BA$ ist normal.
 - \checkmark ABA ist selbstadjungiert.

Explanation:

(a)
$$(AB)^* = B^*A^* = BA$$
. Ein Gegenbeispiel ist: $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}$.

(b)
$$(AB + BA)^* = B^*A^* + A^*B^* = BA + AB$$
.

(c)
$$(AB - BA)^* = B^*A^* - A^*B^* = -(AB - BA)$$
. Also:

$$(AB - BA)^* (AB - BA) = (AB - BA) (AB - BA)^* = -(AB - BA)^2.$$

(d)
$$(ABA)^* = A^*B^*A^* = ABA$$
.

3. Seien A eine normale Matrix und $p \in \mathbb{C}[t]$ ein polynom. Welche der folgenden Aussagen ist im Allgemeinen korrekt?

$$\bigcirc p(A)^* = p(A^*).$$

$$\checkmark A^i(A^*)^j = (A^*)^j A^i.$$

- $\checkmark p(A)$ ist normal.
- \bigcirc Jeder Eigenwert λ von A ist auch ein Eigenwert von p(A).
- ✓ Jeder Eigenvektor v von A ist auch ein Eigenvektor von p(A).

Explanation:

- (a) Falsch. $(\lambda A)^* = \overline{\lambda} A^*$. Ist $p(t) = \sum a_i t^i$, so ist $p(A)^* = \sum \overline{a_i} (A^*)^i$.
- (b) Wahr. Es ist $AA^* = A^*A$. Mit Induktion ist:

$$A^{i}(A^{*})^{j} = A^{i-1}A^{*}A(A^{*})^{j-1} = \dots = A^{i-1}(A^{*})^{j}A = \dots = (A^{*})^{j}A^{i}.$$

- (c) Wahr. Die $a_i A^i$ $(i \ge 0)$ sind normal und somit auch deren Summe.
- (d) Falsch. Ein Gegenbeispiel ist A = 0, p(t) = 1, dann ist p(A) = 1, hat 0 nicht als Eigenwert.
- (e) Wahr. $p(A)v = \sum a_i A^i v = \sum a_i \lambda^i v = p(\lambda)v$.

Note. Sei (v_i) eine ONB aus Eigenvektoren zu den Eigenwerten λ_i von A, dann ist (v_i) eine ONB aus Eigenvektoren zu den Eigenwerten $p(\lambda_i)$ von p(A).