D-MATH Prof. Dr. S. Zerbes

Lineare Algebra II

FS 2024

Serie 26

Tensorprodukt

- 1. Zeige: Ist $1 \leq n := \min\{\dim_k(V_1), \dim_K(V_2)\} < \infty$ für Vektorräume V_1 und V_2 , so ist jeder Tensor in $V_1 \otimes_K V_2$ eine Summe von n reinen Tensoren, aber im allgemeinen nicht von n-1 reinen Tensoren.
- 2. Sei V ein Vektorraum der Dimension n und sei t ein Element von $V \otimes_K V$. Seien $B = (b_1, \ldots, b_n)$ und $B' = (b'_1, \ldots, b'_n)$ geordnete Basen von V und schreibe

$$t = \sum_{i,j=1}^{n} \alpha_{ij} \cdot b_i \otimes b_j = \sum_{i,j=1}^{n} \alpha'_{ij} \cdot b'_i \otimes b'_j$$

mit eindeutigen Koeffizienten $\alpha_{ij},\alpha'_{ij}\in K$. Beschreibe die Beziehung zwischen den Matrizen

$$A := (\alpha_{ij})_{1 \leq i,j \leq n}$$
 und $A' := (\alpha'_{ij})_{1 \leq i,j \leq n}$

in Termen der Basiswechselmatrix $[id]_{R'}^{B}$.

3. Verwenden Sie die universelle Eigenschaft des Tensorprodukts, um zu zeigen, dass

$$V \otimes W \cong W \otimes V$$

für endlichdimensionale Vektorräume V, W über einem Körper K.

4. Seien U, V, W endlichdimensionale Vektorräume über einem Körper K. Zeigen Sie, dass

$$\operatorname{Hom}(U \otimes V, W) \cong \operatorname{Hom}(U, \operatorname{Hom}(V, W)).$$

Unwichtige Bemerkung. Wir sagen, dass der "Hom-Funktor" und das Tensorprodukt ein adjungiertes Paar bilden.

- 5. Sei (V, \langle , \rangle) ein unitärer Vektorraum. Bezeichne V aufgefasst als reellen Vektorraum mit $V_{\mathbb{R}}$. Zeige:
 - (a) Der Realteil Re \langle , \rangle ist ein (euklidisches) Skalarprodukt auf $V_{\mathbb{R}}$.
 - (b) Für jede Orthonormalbasis B von (V, \langle , \rangle) ist

$$\{v, iv \mid v \in B\}$$

eine Orthonormalbasis von $(V_{\mathbb{R}}, \operatorname{Re} \langle , \rangle)$.

- (c) Jeder unitäre Endomorphismus von V ist ein orthogonaler Endomorphismus von $V_{\mathbb{R}}$.
- 6. Sei $f\colon V\to V'$ eine lineare Abbildung von $K\text{-Vektorr\"{a}umen},$ und sei L ein Oberk\"{o}rper von K. Zeige:
 - (a) Die Abbildung $f \otimes id_L \colon V_L \to V'_L$ ist L-linear.
 - (b) $\operatorname{Kern}(f \otimes \operatorname{id}_L) = \operatorname{Kern}(f) \otimes_K L$.
 - (c) $\operatorname{Bild}(f \otimes \operatorname{id}_L) = \operatorname{Bild}(f) \otimes_K L$.
 - (d) $\operatorname{Rang}_L(f \otimes \operatorname{id}_L) = \operatorname{Rang}_K(f)$.
- 7. Seien U und V Vektorräume über einem Körper K, und sei $f \in \text{Hom}(U), g \in \text{Hom}(V)$. Definiere

$$f \otimes q : U \otimes V \to U \otimes V$$

durch

$$f \otimes g(v \otimes w) = f(v) \otimes g(w).$$

Beweisen Sie, dass

$$\operatorname{Tr}(f \otimes g) = \operatorname{Tr}(f) \operatorname{Tr}(g).$$