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Bonus Guidelines. You can choose three exercises from the ten exercises below.
Each correct solution earns you 1 point, while an incorrect one yields 0 points. Please
note:

1. You’re welcome to write your solutions in either German or English.

2. Minor computational errors are accepted, as long as they don’t simplify the
exercise.

3. Submitting more than three exercises will raesult in disregarding
ALL exercises (earning zero points).

4. Use the "Bonus" option on the SAM-Up tool to submit your solutions. Ensure
that you are connected to an ETH WiFi or using a VPN.

5. Make sure to upload your solutions before Wednesday 13.12. at 12:00.

The bonus added to your grade (before rounding) follows the formula:

Points Bonus
1 0.1
2 0.2
3 0.25

Table 1: Conversion Table for Points to Bonus.
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Exercise 1. Compute

a :=

√√√√
1 +

√
1 +

√
1 +

√
1 +

√
1 + · · ·.

i.e. the limit of the recursive sequence (an)n∈N with a0 = 1 and an+1 =
√

1 + an.

Clarification: You also need to show that the sequence converges.

Solution. We first show that (an) is a bounded and increasing sequence. Then by
Theorem 2.108 it converges and the limit must satisfy

a =
√

1 + a (1)

• (an) is bounded: We show

∀n ∈ N : 1 ≤ an ≤ 2 (2)

by induction:

– a0 = 1. Clearly 1 ≤ a0 ≤ 2

– Assume 1 ≤ an ≤ 2. Then

an+1 =
√

1 + an >
√

1 = 1

So the lower bound holds. Similarly,

an+1 =
√

1 + an ≤
√

1 + 2 ≤
√

4 = 2.

• (an) is increasing: Again we use a proof by induction:

– a1 =
√

1 + 1 >
√

1 = 1 = a0

– Assume now an > an−1. Then we have

an ≥ an−1 ⇐⇒ 1 + an ≥ 1 + an−1

⇐⇒
√

1 + an ≥
√

1 + an−1

⇐⇒ an+1 ≥ an

So by Theorem 2.108 limn→∞ an = a exists. Then

a = lim
n→∞

an+1 = lim
n→∞

√
1 + an =

√
1 + lim

n→∞
an =

√
1 + a,
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where we used sequential continuity of the square root in the last step. We compute

a =
√

1 + a =⇒ a2 = 1 + a

=⇒ a2 − a − 1 = 0

=⇒ a1,2 = 1 ±
√

1 + 4
2

Notice that 1−
√

5
2 < 0 is not an option for the limit because 1 ≤ an ≤ 1+

√
5

2 for all n.
So we conclude

a = 1 +
√

5
2 .

Exercise 2. Show the equivalence of the following two statements:

i) Every Cauchy sequence in R converges.

ii) Every absolutely convergent series in R is convergent.

Clarification: It is not sufficient to say that i) was proved in the lecture. You need to
show that i) implies ii) and that ii) implies i).

Solution.

⇒ Assume that ∑∞
n=1 an is an absolutely convergent series and let SN = ∑N

n=1 an

denote the partial sums. For N > M , we have

|SN − SM | = |
N∑

n=M+1
an| ≤

N∑
n=M+1

|an| ≤
∞∑

n=M+1
|an|

and since the series is absolutely convergent, there is a N0 ∈ N such that
∞∑

n=M+1
|an| ≤ ϵ

whenever M ≥ N0. Therefore, SN is a Cauchy sequence and converges by i).

⇐ Let (an)n∈N ⊂ R be a Cauchy sequence. For all i ∈ N, we can find a N(i) ∈ N
such that

|an − am| <
1
2i

if m, n ≥ N(i).

Without loss of generality, we choose the N(i) increasing i.e. such that N(i+1) ≥
N(i).
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Then we consider the series
∞∑

i=1
|aN(i) − aN(i+1)|.

Note that since |aN(i) − aN(i+1)| ≤ 1
2i , this series is bounded from above by the

geometric series ∑∞
i=1

1
2i . By ii) it follows that

∞∑
i=1

(aN(i) − aN(i+1))

converges.

However, this is a "telescopic series" and we get that

aN(k) = aN(1) +
k∑

i=1
(aN(i) − aN(i+1)).

It follows that aN(k) converges to some a ∈ R. We conclude by Exercise 2.123.

Exercise 3. The exercises a) and b) are independent.

a) In this exercise, we want to show the following statement :

Let a, b ∈ R with a < b and assume that f : [a, b] → R is differentiable. Show
that for every real number y ∈ R between f ′(a) and f ′(b), there is a c ∈ [a, b]
such that f ′(c) = y.

Note that we only assume that f ′ exists, not that it is continuous. To prove
this result, proceed as follows:

i) Assume that f ′(a) > 0 and f ′(b) < 0. Show that there exists a c ∈ [a, b]
such that f ′(c) = 0.

Hint: Look for a Maximum.

ii) Assume that f ′(a) > f ′(b) and show that for each real number y ∈
(f ′(b), f ′(a)), there is a c ∈ [a, b] such that f ′(c) = y.

iii) Show the statement.

b) i) Let I ⊂ R be an open interval and let f : I → R be differentiable such that
f ′ > 0. Show that f is injective.
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ii) Let g : R → R be a differentiable function whose derivative is bounded
on R by a constant M > 0 i.e. |g′(x)| ≤ M for all x ∈ R. Show that, for
a ∈ (− 1

M , 1
M ), the function

f : R → R
x 7→ x + a · g(x)

is injective.

Solution.

a) i) Since f is differentiable, it is also continuous. Hence it assumes its maximum
and its minimum on the compact interval [a, b]. The maximum is either at
a, at b or at some point c ∈ [a, b] where f ′(c) = 0. We show that the first
two cases are not possible. From this it follows that the third must hold
and that we have found the required c ∈ [a, b].

If a were a maximum of f , then for all x ∈ [a, b] we had f(x) ≤ f(a).
However, this would imply that

f ′(a) = lim
h→0+

f(a + h) − f(a)
h

≤ 0

contradicting our hypothesis that f ′(a) > 0.

If b were a muximum of f , then for all x ∈ [a, b] we had f(x) ≤ f(b).
However, this would imply that

f ′(b) = lim
h→0+

f(b) − f(b − h)
h

≥ 0

contradicting our hypothesis that f ′(b) < 0.

ii) Consider the function

g : [a, b] → R
x 7→ g(x) − yx.

As it is the sum of two differentiable functions, g is differentiable and

g′(x) = f ′(x) − y.

Since f ′(b) < y < f ′(a) we have

g′(a) = f ′(a) − y > 0 and g′(b) = f ′(b) − y < 0.

Hence we can apply part i) to g(x) and conclude that there is a c ∈ [a, b]
such that

g′(c) = f ′(c) − y = 0.

5



d-math
Prof. Alessio Figalli

Analysis I: one Variable
Solutions for Bonus Sheet

ETH Zürich
HS 2023

iii) We have already addressed the case f ′(a) > f ′(b).

If f ′(a) = f ′(b), then the only value for y is y = f ′(a) = f ′(b) and so we
may choose either c = a or c = b.

The case f ′(a) < f ′(b) is analoguous to the case f ′(a) > f ′(b) with the
only modification that in part i), we have to consider f such that f ′(a) < 0
and f ′(b) > 0 and look for a minimum.

b) i) Assume by contradiction that f is not injective. Then there are points
x < y in I such that f(x) = f(y). f is continuous and differentiable on
[x, y], and so by the mean value theorem there exists a α ∈ (x, y) such that

f ′(α) = f(x) − f(y)
x − y

= 0.

This contradicts our assumption that f ′ > 0 and so the assumption that f
was not injective must be false.

ii) Since the derivative of g is bounded by M , it holds for all x ∈ R that

|g′(x)| ≤ M.

f is differentiable as a combination of differentiable functions and we have
for all x ∈ R

f ′(x) = 1 + ag′(x).

We then see that
|f ′(x) − 1| = |ag′(x)| ≤ |a|M.

Hence we get that

1 − |a|M ≤ f ′(x) ≤ 1 + |a|M.

But since a ∈ (− 1
M , 1

M ), we have |a| < 1
M and so

1 − |a|M > 1 − 1 = 0

which immediately implies that f ′ > 0. We then conclude by part a) that
f is injective.

Remark: This is an argument that you will see again in the course of Analysis
II in the proof of the implicit function theorem.

Exercise 4.
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a) Let I be a compact (i.e. closed and bounded) non-empty interval and f : I → R
a continuous function such that f(I) ⊆ I. Show that there is an x ∈ I such
that f(x) = x.

b) Show that statement a) is false if we assume that I is closed, but not necessarily
bounded.

c) Show that statement a) is false if we assume that I is bounded, but not necessarily
closed.

Solution.

a) Let I = [a, b] with a ≤ b and consider the following continuous function

g : I → R
x 7→ f(x) − x.

Since f(I) ⊆ I, a ≤ f(x) ≤ b applies to all x ∈ [a, b]. Hence g satisfies

g(a) = f(a) − a ≥ 0 and g(b) = f(b) − b ≤ 0.

According to the intermediate value theorem, there is therefore an x ∈ [a, b] so
that g(x) = 0 i.e. f(x) = x.

b) A counterexample is

f : [0, ∞) → [0, ∞)
x 7→ x + 1.

The function f is continuous and maps I = [0, ∞) to I but f(x) − x = 1 ̸= 0
for all x ∈ I. Note that I is closed in R since its complement in R is the open
set (−∞, 0).

c) A counterexample is the function

f : (−1, 1) → (−1, 1)

x 7→ x + 1
2 .

Clearly, I = (−1, 1) is bounded but not closed. The function fext : R → R
defined by fext(x) = x+1

2 has as only fixed point x0 = 1 as

x + 1
2 = x ⇐⇒ x = 1.

But x0 /∈ I.
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Exercise 5.

a) Determine where the following functions f : R → R are discontinuous:

i) f(x) = 4x+5
9−3x

ii) f(x) = 6
x2−3x−10

iii) f(x) = 9x2+102x+289
3x+17

iv)

f(x) =



1 − 3x x < −6
7 x = −6
x3 −6 < x < 1
1 x = 1
2 − x x > 1.

v) f(x) = 1
2−4 cos( x

3 )

Clarification: You also have to investigate what happens at the points where f
might not be defined. Is there a continuous extension of the function?

b) Show that there exists at least one solution to the following equations in the
indicated interval:

i) w2 − 4 log(5w + 2) = 0 on [0, 4],

ii) 4t + 10et − 2e2t = 0 on [1, 3].

c) Let fn : [0, 1] → R be the sequence of functions given by

fn(x) = n2x

nx2 + n2x + 1 .

Does this sequence of functions converge pointwise or uniformly? If possible,
determine the limit.

Solution.

a) i) x = 3 since it is the unique zero of g(x) = 9 − 3x.

ii) There are two points where the function is not defined, namely at x = −2
and at x = 5. There are no possible continuous extensions since the limits
from the right and from the left at these points are neither finite nor do
they agree (one is actually +∞ and the other is −∞). Everywhere else
the function is continuous as a combination of continuous functions.
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iii) 9x2 + 102x + 289 = (3x + 17)2 and so f(x) = 3x + 17 which is continuous
everywhere.

iv) There is a jump at x = −6 since (−6)3 ̸= 7. At x = 1 the function is
continuous.

v) Note that 2 − 4 cos(x
3 ) = 0 if and only if cos(x

3 ) = 1
2 . But cos(t) = 1

2
if t = π

3 + 2πk or t = 5π
3 + 2πk for k ∈ Z. So we get discontinuities at

x = π + 6kπ and x = 5π + 6kπ for k ∈ Z.

b) i) Note that the function f(x) = x2 − 4 log(5x + 2) is continuous as a
combination/composition of continous function. Moreover, observe that
f(0) = −4 log(2) < 0 and f(4) = 16 − 4 log(22) > 0. By the intermediate
value theorem there is a y ∈ [0, 4] such that f(y) = 0.

ii) Exactly the same argument as in i).

c) Note that fn(0) = 0 for all n ∈ N. For 0 < x ≤ 1 on the other hand, we have

lim
n→∞

fn(x) = lim
n→∞

n2x

n2x + nx2 + 1
= lim

n→∞
x

x2

n + x + 1
n2

= x

x
= 1.

Hence fn converges pointwise to

f(x) =
{

0 if x = 0
1 else.

The convergence can not be uniform: The functions fn are continuous but f is
clearly not. However, the uniform limit of any sequence of continuous functions
is continuous. Hence f can not be a uniform limit of fn.

Exercise 6.

a) Let z ∈ C be a complex number. Analyse the convergence behaviour of the
series ∑∞

n=0 zn and calculate the limit if it exists.

9



d-math
Prof. Alessio Figalli

Analysis I: one Variable
Solutions for Bonus Sheet

ETH Zürich
HS 2023

b) Let θ ∈ R. Analyse the convergence behaviour of the series ∑∞
n=0

cos(nθ)
2n and

calculate the limit if it exists.

Hint: You may use without proof that for (an)n∈N ⊂ C we have

∞∑
n=0

Re (an) = Re
( ∞∑

n=0
an

)
.

Solution.

a) We assume first that ∑∞
n=0 zn converges. By the same proof as Proposition 4.3, it

follows that limn→∞ zn = 0. But this implies that limn→∞ |zn| = limn→∞ |z|n =
0 by exercise 2.133. However, the sequence (|z|n)n∈N converges to 0 if and only
if |z| < 1 so if ∑∞

n=0 zn converges, we must have |z| < 1. In particular, for any
z such that |z| ≥ 1, the series ∑∞

n=0 zn can not converge.

Reversely, assume now that |z| < 1. The series ∑∞
n=0 |zn| = ∑∞

n=0 |z|n is a real
geometric series which converges by the hypothesis |z| < 1.

We first compute the partial sums. By induction we see that

Sm =
m∑

n=0
zn = 1 − zm+1

1 − z
.

Indeed, for m = 0 we get 1 on both sides. Assume thus that the result holds for
m − 1. Then

m∑
n=0

zm =
m−1∑
n=0

zn + zm = 1 − zm

1 − z
+ zm = 1 − zm + (1 − z)zm

1 − z
= 1 − zm+1

1 − z
.

Then we only need to compute the limit

lim
m→∞

Sm = lim
m→∞

1 − zm+1

1 − z
= 1

1 − z
.

b) The series converges absolutely for any θ ∈ R. This can be seen using the
criterion of Majorant and the fact that | cos(nθ)

2n | ≤ 1
2n and ∑∞

n=0
1

2n < ∞.

We then compute the value of the series:

∞∑
n=0

cos(nθ)
2n

=
∞∑

n=0
Re
(

einθ

2n

)
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= Re
( ∞∑

n=0

(
eiθ

2

)n)

= Re
(

1
1 − eiθ

2

)

= 1
2 − eiθ

+ 1
2 − e−iθ

= 4 − eiθ − e−iθ

4 − 2(eiθ + e−iθ) + eiθe−iθ

= 4 − 2 cos(θ)
5 − 4 cos(θ) .

Exercise 7.

a) Show that for any γ > 0 the ”reciprocal” function g : (γ, ∞) → R, x 7→ 1
x is

uniformly continuous.

b) Show that the function h : R>0 → R, x 7→ 1
x is not uniformly continuous on the

non-negative reals.

Solution.

a) To show that ∀γ > 0 the function g : (γ, ∞) → R, x 7→ 1
x is uniformly continuous

we need to show that ∀γ > 0, ∀ε > 0, ∃δ > 0 such that ∀x, y ∈ (γ, ∞) we have
|x − y| < δ=⇒|g(x) − g(y)| < ε.

We start by fixing any γ > 0 and taking an arbitrary ε > 0. We notice that for
any x, y ∈ (γ, ∞) we have that

|g(x) − g(y)| =
∣∣∣∣1x − 1

y

∣∣∣∣ =
∣∣∣∣y − x

xy

∣∣∣∣ = |x − y|
xy

<
|x − y|

γ2 (3)

because x, y > γ. This allows us to deduce that for δ = εγ2 we have

|x − y| < δ=⇒|g(x) − g(y)| <
|x − y|

γ2 <
δ

γ2 = εγ2

γ2 = ε (4)

In fact, this is an even stronger result than uniform continuity because this shows
that the reciprocal function on the domain (γ, ∞) for any γ > 0 is Lipschitz
continuous with the Lipschitz constant γ2.
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b) To show that the function h : R>0 → R, x 7→ 1
x is not uniformly continuous we

need to show that there exists an ε > 0 such that ∀δ > 0 we can find x, y ∈ R>0
that satisfy |x − y| < δ=⇒|h(x) − h(y)| ≥ ε.

Heuristically, we expect that the outputs of two points that are close to zero
(and each other) will still be far away from each other just because of the way
the reciprocal function behaves. Therefore, it feels like the actual value of ε
is not that important and we choose ε = 1. Then, we fix an arbitrary δ > 0
and apply a corollary to the Archimedean principle (Corollary 2.65) to find an
n ∈ N>0 such that 1

n < δ. This gives us

0 <
1
δ

< n < n + 1 ≤ 2n < 2n + 2,

which is equivalent to

1
2n + 2 <

1
2n

≤ 1
n + 1 <

1
n

< δ. (5)

Now, if we choose our points x and y to be x = 1
2n and y = 1

2n+2 , we see that

|x − y| =
∣∣∣∣ 1
2n

− 1
2n + 2

∣∣∣∣ =
∣∣∣∣ 2
4n2 + 4n

∣∣∣∣ <

∣∣∣∣ 2
4n

∣∣∣∣ = 1
2n

< δ, (6)

where we use (5) in the last inequality. This shows us that the distance between
the two points x and y is less than δ. Furthermore, we have that

|h(x) − h(y)| =
∣∣∣∣∣ 1

1
2n

− 1
1

2n+2

∣∣∣∣∣ = |2n − (2n + 2)| = 2 ≥ 1 = ε. (7)

Exercise 8. Let f : R → R be a convex function.

a) Prove that the right and left derivative exist at every point.

b) Show that f is continuous.

Hint: Use part a).

Solution.

a) We consider 0 < h1 < h2 and the corresponding points x < x + h1 < x + h2. By
the definition of convexity in the form of Equation 5.7, we have

f(x + h1) − f(x)
h1

≤ f(x + h2) − f(x)
h2
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or in other words, the function

R(h) = f(x + h) − f(x)
h

is monotonically increasing on (0, r) for any r > 0. It follows that

L(h) = R(−h) = f(x) − f(x − h)
h

is monotonically decreasing.

But then we see that looking at the triple x−h < x < x+h as before, we obtain

f(x) − f(x − h)
x − (x − h) ≤ f(x + h) − f(x)

x + h − x

which gives that L(h) ≤ R(h). In particular, R(h) is bounded from below and
hence its infimum R0 = infh∈(0,r) R(h) is finite.

We now show that limh→0+ R(h) = R0, which shows that f is differentiable from
the right at x. We pick an ϵ > 0 arbitrary and look for a δ > 0, such that for all
h ∈ [0, δ) we have R(h) ∈ (R0 − ϵ, R0 + ϵ). We always have R(h) ≥ R0 − ϵ by
definition of R0. R0 + ϵ however is not a lower bound (it is strictly larger than
the infimum) and so there is a δ ∈ (0, r) such that R(δ) ≤ R0 + ϵ. But since F
is monotonically increasing, for each h ∈ (0, δ), we have R(h) ≤ R(δ) < R0 + ϵ
as wanted. Analoguously, we show that limh→0+ L(h) exists.

b) Remark 5.2 shows that differentiability from the right implies continuity from
the right. Analoguously, one sees that differentiability from the left implies
continuity from the left. But continuity from the left and from the right together
imply continuity.

Exercise 9. Compute the value of the series
∞∑

n=1

1
n2

proceeding as follows:

a) For every n ∈ Z, compute the integral

cn = 1
2π

∫ π

−π
f(x)e−inx dx = 1

2π

∫ π

−π
f(x)(cos(nx) − i sin(nx)) dx

for f(x) = x.
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b) Compute the value of the series using Parseval’s identity (which you do not
have to prove!)

|c0|2 +
∞∑

n=1
|cn|2 +

∞∑
n=1

|c−n|2 = 1
2π

∫ π

−π
|f(x)|2 dx.

Solution.

a) We compute the cases n = 0 and n ̸= 0 separately:

c0 = 1
2π

∫ π

−π
x dx

= 1
2π

x2

2

∣∣∣∣∣
π

−π

= 0

cn = 1
2π

∫ π

−π
xe−inx dx

= 1
2π(−in)

∫ π

−π
x(−in)e−inx dx

= 1
2π(−in)

∫ π

−π
x
(
e−inx)′ dx

)
= 1

2π(−in)

(
xe−inx

∣∣∣π
−π

−
∫ π

−π
e−inx dx

)
= 1

2π(−in)

(
πe−inπ − (−πeinπ) − e−inx

−in

∣∣∣∣∣
π

−π

)

= 1
2π(−in)

(
2π cos(nπ) − (e−inπ

−in
− einπ

−in
)
)

= 1
2π(−in)

(
2π(−1)n + 2sin(nπ)

n

)
= (−1)n

−in

= i(−1)n

n
.

b) We first compute the left hand side of Parseval’s identity

|c0|2 +
∞∑

n=1
|cn|2 +

∞∑
n=1

|c−n|2 = 0 + 2
∑
n=1

1
n2
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and conclude that
∞∑

n=1

1
n2 = 1

2

( 1
2π

∫ π

−π
|f(x)|2 dx

)
= 1

4π

∫ π

−π
x2 dx

= 1
4π

x3

3

∣∣∣∣∣
π

−π

= 1
4π

(
π3

3 − (−π)3

3

)

= 1
4π

2π3

3

= π2

6 .

Exercise 10. Consider the improper integral∫ ∞

0

sin(x)
xα

dx

with α > 0. For which values of α does it converge?

Solution. We chop up the positive real line in pieces of length π and note that∫ ∞

0

sin(x)
xα

dx =
∞∑

n=0

∫ (n+1)π

nπ

sin(x)
xα

dx =
∞∑

n=0
an

where we defined
an =

∫ (n+1)π

nπ

sin(x)
xα

dx.

There are two possible sources of a divergence. Either one of the coefficients diverges
or the series as a whole diverges. Since sin(x)/xα is finite everywhere except possibly
at the origin, we actually only need to check the coefficient a0.

For α ≥ 2 this coefficient does not exist: Since sin(x)
x is continuous (away from the

origin) and limx→0
sin(x)

x = 1, there is a 0 < r < π such that sin(x)
x ≥ 1

2 for all x ∈ [0, r].
Hence ∫ r

0

sin(x)
xα

dx ≥ 1
2

∫ r

0

1
xα−1 dx.

But this integral converges if and only if α < 2. Indeed, if α = 2, then 1
xα−1 = 1

x
integrates to the natural logarithm and limx→0+ log(x) = −∞. If α > 2, then 1

xα−1

integrates to x2−α

2−α and again limx→0+
x2−α

2−α = ∞.
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For α ∈ (0, 2) the coefficient a0 does exist. Indeed, the argument is almost as above.
Since sin(x)/x ≤ 1, we see that

∫ π

0

sin(x)
xα

dx ≤
∫ π

0

1
xα−1 dx = x2−α

2 − α

∣∣∣∣∣
π

0
= π2−α

2 − α
.

For α ∈ (0, 2), the sequence an is an alternating sequence of decreasing size, so its
series ∑n an converges. Moreover, an is alternating since sin(x + nπ) = (−1)n sin(x).
Finally, it is decreasing since 1

xα is monotonically decreasing.
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