D-MATH	Analysis I: one Variable	ETH Zürich
Prof. Alessio Figalli	Exercise Sheet 0	HS 2023

Aufgabe 1. Show by induction the following identities for integers $n \ge 1$:

- a) $1+2+\ldots+n = \frac{n(n+1)}{2}$,
- b) $1^3 + 2^3 + \ldots + n^3 = (1 + 2 + \ldots + n)^2$.

Aufgabe 2. Draw V points on a sheet of paper. Connect the points with enough lines (which do not intersect and have different start and end points) so that you get a connected picture. That is, there is a path from each point to every other point along the drawn lines. Let E be the number of lines and F the number of areas into which the lines divide your sheet of paper. Calculate,

$$V - E + F$$

for different examples and make a conjecture. Prove the conjecture by induction.

Aufgabe 3. Find a relation on the natural numbers \mathbb{N} fulfilling the following properties:

- a) only the symmetry,
- b) the transitivity (and the antisymmetry),
- c) the reflexivity and the transitivity but not the symmetry .

Aufgabe 4. Let (X, \leq) be an ordered set. If there exists $m \in X$ such that $x \leq m$ holds for all $x \in X$, then $m \in X$ is called a/the **maximum** of X. Convince yourself that X can have at most one maximum.

Aufgabe 5. We consider the set of all points on a circular line in the plane \mathbb{R}^2 . For two points P and Q we say that $P \leq Q$ holds if P = Q, or if the arc from P to Q in the counterclockwise direction is (strictly) shorter than the arc from Q to P in the counterclockwise direction.

D-MATH	Analysis I: one Variable	ETH Zürich
Prof. Alessio Figalli	Exercise Sheet 0	HS 2023

Is the relation defined in this way an order relation on the points of the circular line? Can there be an order relation on this set at all?