Exercise 1. (Old exam question) Find all solutions $y: \mathbb{R} \rightarrow \mathbb{R}$ of the differential equation

$$
y^{\prime}=e^{x-y}
$$

that are defined on the entire $\mathbb{R}$.

Exercise 2. (Old exam question) Find the solution $y: I \rightarrow \mathbb{R}$ of the initial value problem

$$
x^{2} y^{\prime}=y^{2}, \quad y(1)=2
$$

Exercise 3. (Old exam question) Find the general solution of the differential equation $y^{\prime}=\frac{y+\sqrt{x^{2}+y^{2}}}{x}$ for $x>0$.

Hint: Use the substitution $u=y / x$.

Differential Equations with Power Series In the following two Exercises, we want to learn a new technique for finding solutions to certain differential equations. The idea is to write the function as a Taylor series, differentiate term by term, substitute this into the differential equation, and derive conditions for the coefficients.

More specifically, we proceed as follows:

1. We assume that the solution $y(x)$ of a differential equation can be written as a Taylor series, that is

$$
y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}
$$

2. We differentiate the Taylor series term by term and obtain

$$
y^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}
$$

and

$$
y^{\prime \prime}(x)=\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}
$$

3. We substitute this into the differential equation and simplify (we may need to redefine the indices of the series).
4. We compare the coefficients with the same powers of $x$ to determine the coefficients $a_{n}$.
5. We substitute the coefficients back into the Taylor series.

Exercise 4. Use the solution method with the Taylor series to find a solution to the differential equation

$$
y^{\prime}(x)+2 x y(x)=0 .
$$

Do you know a function whose Taylor series is exactly the one you obtained as a solution? Verify that your solution is correct by substituting this function back into the differential equation.

Note: If you don't know such a function, solve the differential equation by separating variables and verify that the solutions match.

Exercise 5. (Bessel equation with $\alpha=0$ ) Find a solution to the differential equation

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0 .
$$

Note: This is the DE from Example 7.73, item 4, for $\alpha=0$.

