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Exercise 1. (Old exam question) Find all solutions y : R → R of the differential
equation

y′ = ex−y,

that are defined on the entire R.

Exercise 2. (Old exam question) Find the solution y : I → R of the initial value
problem

x2y′ = y2, y(1) = 2,

Exercise 3. (Old exam question) Find the general solution of the differential equation
y′ = y+

√
x2+y2

x for x > 0.

Hint: Use the substitution u = y/x.

Differential Equations with Power Series In the following two Exercises, we want
to learn a new technique for finding solutions to certain differential equations. The
idea is to write the function as a Taylor series, differentiate term by term, substitute
this into the differential equation, and derive conditions for the coefficients.

More specifically, we proceed as follows:

1. We assume that the solution y(x) of a differential equation can be written as a
Taylor series, that is

y(x) =
∞∑

n=0
anxn.

2. We differentiate the Taylor series term by term and obtain

y′(x) =
∞∑

n=1
nanxn−1

and
y′′(x) =

∞∑
n=2

n(n − 1)anxn−2.
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3. We substitute this into the differential equation and simplify (we may need to
redefine the indices of the series).

4. We compare the coefficients with the same powers of x to determine the coeffi-
cients an.

5. We substitute the coefficients back into the Taylor series.

Exercise 4. Use the solution method with the Taylor series to find a solution to the
differential equation

y′(x) + 2xy(x) = 0.

Do you know a function whose Taylor series is exactly the one you obtained as a
solution? Verify that your solution is correct by substituting this function back into
the differential equation.

Note: If you don’t know such a function, solve the differential equation by separating
variables and verify that the solutions match.

Exercise 5. (Bessel equation with α = 0) Find a solution to the differential equation

x2y′′ + xy′ + x2y = 0.

Note: This is the DE from Example 7.73, item 4, for α = 0.
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