D-MATH	Analysis I: one Variable	ETH Zürich
Prof. Alessio Figalli	Exercise Sheet 1	HS 2023

Exercise 1. All elephants are pink. Proof by induction on the number of elephants: For 0 elephants, the assertion is correct. Let us inductively assume that in any set consisting of n elephants, all the elephants are pink. Let X be a set with n + 1 elephants and we take out one elephant E. The remaining n elephants are all pink according to the induction assumption. We can choose E so that it is pink: If it would not be pink, we replace it with one of these n pink elephants. So all n + 1 elephants are pink. Where is the mistake?

Exercise 2. Let $n \in \mathbb{N} = \{1, 2, 3, ...\}$. Consider the equivalence relation \sim_n on the integers \mathbb{Z} , which for $a, b \in \mathbb{Z}$ is given by

 $a \sim_n b$ exactly if a - b is a multiple of n.

Let C_n be the set of equivalence classes i.e. the quotient set.¹

- a) How many elements does C_n have?
- b) For each number $a \in \mathbb{Z}$, let $[a]_n \in C_n$ be the associated equivalence class. Show that $(C_n, +)$ forms a group where the addition of two classes $[a]_n, [b]_n \in C_n$ is defined as

$$[a]_n + [b]_n := [a+b]_n.$$

c) Let $C_n^{\times} = C_n \setminus \{[0]_n\}$. Is the multiplication \cdot inherited from the multiplication on \mathbb{Z} i.e.

$$[a]_n \cdot [b]_n := [a \cdot b]_n$$

well-defined?

- d) Does (C_n^{\times}, \cdot) define a group? The existence of multiplicative inverses is not straightforward. Google for *extended Euclidean algorithm*.
- e) Let $n, m \in \mathbb{N}$ and $k \in \mathbb{Z}$. Consider the proposition $g_{n,m}^k : C_n \to C_m$ given by $[a]_n \mapsto [k \cdot a]_m$. When does this rule define a well-defined mapping $g_{n,m}^k$?

Exercise 3. Try to practise your writing style. For example, to prove the rule -0 = 0, something like the following argument is expected:

The additive inverse -0 of 0 must satisfy the property (-0) + 0 = 0 + (-0) = 0according to the definition of the inverse. But because the definition of the neutral element states that 0 + 0 = 0 + 0 = 0 holds and because the inverse is unique in a group, -0 = 0 must hold.

Let $x, y, z \in \mathbb{R}$. Show the following further rules of calculation:

¹See the explanations on the forum: https://forum.math.ethz.ch/t/exercise-sheet-1/3011.

- 1. -(x+y) = (-x) + (-y) (where for the latter we also write = -x y write),
- 2. -(x-y) = -x+y,
- 3. Show that the distributive law for subtraction is. x(y-z) = xy xz. holds.

Exercise 4. Let (K, \leq) be an ordered field. Show that

$$x \le y \iff x^3 + x \le y^3 + y$$

holds for all $x, y \in K$.

Exercise 5. Let (K, \leq) be an ordered field and let $x, y, z \in K$ with xyz > 0. Show that the following inequality holds.

$$\frac{x}{yz} + \frac{y}{zx} + \frac{z}{xy} \ge \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.$$

Exercise 6. (*Inverse triangle inequality*) Let (K, \leq) be an ordered field. Show that for all $x, y \in K$ the inequality.

$$\left||x| - |y|\right| \le |x - y|$$

holds. In which cases does equality hold?

Exercise 7.

- 1. Let K be a field with finitely many elements, in short a finite field. Show that there is no order relation on K that would make K an ordered field.
- 2. Let K be a field. Suppose there is an element $u \in K$ with property $u^2 + 1 = 0$. Show that there is no order relation on K that would make K an ordered field.