Exercise 1. All elephants are pink. Proof by induction on the number of elephants: For 0 elephants, the assertion is correct. Let us inductively assume that in any set consisting of n elephants, all the elephants are pink. Let X be a set with $n+1$ elephants and we take out one elephant E. The remaining n elephants are all pink according to the induction assumption. We can choose E so that it is pink: If it would not be pink, we replace it with one of these n pink elephants. So all $n+1$ elephants are pink. Where is the mistake?

Exercise 2. Let $n \in \mathbb{N}=\{1,2,3, \ldots\}$. Consider the equivalence relation \sim_{n} on the integers \mathbb{Z}, which for $a, b \in \mathbb{Z}$ is given by

$$
a \sim_{n} b \text { exactly if } a-b \text { is a multiple of } n .
$$

Let C_{n} be the set of equivalence classes i.e. the quotient set. ${ }^{1}$
a) How many elements does C_{n} have?
b) For each number $a \in \mathbb{Z}$, let $[a]_{n} \in C_{n}$ be the associated equivalence class. Show that $\left(C_{n},+\right)$ forms a group where the addition of two classes $[a]_{n},[b]_{n} \in C_{n}$ is defined as

$$
[a]_{n}+[b]_{n}:=[a+b]_{n} .
$$

c) Let $C_{n}^{\times}=C_{n} \backslash\left\{[0]_{n}\right\}$. Is the multiplication • inherited from the multiplication on \mathbb{Z} i.e.

$$
[a]_{n} \cdot[b]_{n}:=[a \cdot b]_{n}
$$

well-defined?
d) Does $\left(C_{n}^{\times}, \cdot\right)$ define a group? The existence of multiplicative inverses is not straightforward. Google for extended Euclidean algorithm.
e) Let $n, m \in \mathbb{N}$ and $k \in \mathbb{Z}$. Consider the proposition $g_{n, m}^{k}: C_{n} \rightarrow C_{m}$ given by $[a]_{n} \mapsto[k \cdot a]_{m}$. When does this rule define a well-defined mapping $g_{n, m}^{k}$?

Exercise 3. Try to practise your writing style. For example, to prove the rule $-0=0$, something like the following argument is expected:
The additive inverse -0 of 0 must satisfy the property $(-0)+0=0+(-0)=0$ according to the definition of the inverse. But because the definition of the neutral element states that $0+0=0+0=0$ holds and because the inverse is unique in a group, $-0=0$ must hold.
Let $x, y, z \in \mathbb{R}$. Show the following further rules of calculation:

[^0]1. $-(x+y)=(-x)+(-y)$ (where for the latter we also write $=-x-y$ write),
2. $-(x-y)=-x+y$,
3. Show that the distributive law for subtraction is. $x(y-z)=x y-x z$. holds.

Exercise 4. Let (K, \leq) be an ordered field. Show that

$$
x \leq y \Longleftrightarrow x^{3}+x \leq y^{3}+y
$$

holds for all $x, y \in K$.

Exercise 5. Let (K, \leq) be an ordered field and let $x, y, z \in K$ with $x y z>0$. Show that the following inequality holds.

$$
\frac{x}{y z}+\frac{y}{z x}+\frac{z}{x y} \geq \frac{1}{x}+\frac{1}{y}+\frac{1}{z}
$$

Exercise 6. (Inverse triangle inequality) Let (K, \leq) be an ordered field. Show that for all $x, y \in K$ the inequality.

$$
||x|-|y|| \leq|x-y|
$$

holds. In which cases does equality hold?

Exercise 7.

1. Let K be a field with finitely many elements, in short a finite field. Show that there is no order relation on K that would make K an ordered field.
2. Let K be a field. Suppose there is an element $u \in K$ with property $u^{2}+1=0$. Show that there is no order relation on K that would make K an ordered field.

[^0]: ${ }^{1}$ See the explanations on the forum: https://forum.math.ethz.ch/t/exercise-sheet-1/3011.

