D-MATH	Analysis I: one Variable	ETH Zürich
Prof. Alessio Figalli	Exercise Sheet 2	HS 2023

Exercise 1. Let X and Y be sets, \sim be an equivalence relation on X and \equiv be an equivalence relation on Y. Let $f: X \to Y$ be a function such that.

$$x_1 \sim x_2 \implies f(x_1) \equiv f(x_2)$$

holds for all x_1, x_2 . Show that there exists a uniquely determined mapping $g: X/_{\sim} \to Y/_{\equiv}$ which is.

$$g([x]_{\sim}) = [f(x)]_{\equiv}$$

for all $x \in X$.

- 1. Suppose $f: X \to Y$ is surjective. Does it follow that g is also surjective?
- 2. Suppose $f: X \to Y$ is injective. Does it follow that g is also injective?
- 3. Suppose $g: X/_{\sim} \to Y/_{\equiv}$ is surjective. Does it follow that f is also surjective?
- 4. Assume that $g: X/_{\sim} \to Y/_{\equiv}$ is injective. Does it follow that f is also injective?

Exercise 2. Decide for yourself which of the following statements are true and which are false.

Let X and Y be sets, and let $f : X \to Y$ be a function. Let A, A_1 , A_2 be subsets of X, and B, B_1 , B_2 be subsets of Y.

 $\begin{array}{ll} (1) & f(A_1) \cup f(A_2) = f(A_1 \cup A_2) \\ (2) & f(A_1) \cap f(A_2) = f(A_1 \cap A_2) \\ (3) & f^{-1}(f(A)) = A \end{array} \qquad \begin{array}{ll} (4) & f^{-1}(B_1) \cup f^{-1}(B_2) = f^{-1}(B_1 \cup B_2) \\ (5) & f^{-1}(B_1) \cap f^{-1}(B_2) = f^{-1}(B_1 \cap B_2) \\ (6) & f(f^{-1}(B)) = B \end{array}$

Which of the false statements are true if we also assume that f is an injective and a surjective function respectively?

Exercise 3. In this exercise we show the existence and uniqueness of a bijective function $\sqrt{\cdot} : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$ with property $(\sqrt{a})^2 = a$ for all $a \in \mathbb{R}_{>0}$.

- a) Show that for all $x, y \in \mathbb{R}_{>0}$: x < y is equivalent to $x^2 < y^2$.
- b) Uniqueness: Derive from step 1 that for every $a \ge 0$ there can be at most one element $c \ge 0$ satisfying $c^2 = a$.
- c) Existence: For a real number $a \in \mathbb{R}_{\geq 0}$ consider the non-empty subsets

$$X = \{ x \in \mathbb{R}_{\geq 0} \mid x^2 \le a \}, \qquad Y = \{ y \in \mathbb{R}_{\geq 0} \mid y^2 \ge a \},$$

and apply the completeness axiom to find $c \in \mathbb{R}$ with $x \leq c \leq y$ for all $x \in X$ and $y \in Y$. Prove that $c \in X$ and $c \in Y$ to conclude that both $c^2 \leq a$ and $c^2 \geq a$ hold, so $c^2 = a$.

D-MATH	Analysis I: one Variable	ETH Zürich
Prof. Alessio Figalli	Exercise Sheet 2	HS 2023

Hint. If by contradiction $c \notin X$ is (i.e. $c^2 > a$), then one can find a suitably small real number $\varepsilon > 0$ such that $(c - \varepsilon)^2 \ge a$. So $c - \varepsilon \in Y$, which contradicts $y \ge c$ for any $y \in Y$. The case of $c \notin Y$ is analogous.

We call square root function the function $\sqrt{\cdot} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$, which assigns to each $a \in \mathbb{R}_{\geq 0}$ the number $c \in \mathbb{R}_{\geq 0}$ uniquely determined by the above construction. We note that $c^2 = a$, and we call $c = \sqrt{a}$ the square root of a. Show that:

- d) Increasing: The function $\sqrt{\cdot}$ is increasing: for $x, y \in \mathbb{R}_{\geq 0}$ with x < y, the inequality $\sqrt{x} < \sqrt{y}$ holds.
- e) Bijectivity: The function $\sqrt{\cdot} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is bijective.
- f) Multiplicity: For all $x, y \in \mathbb{R}_{\geq 0}, \sqrt{xy} = \sqrt{x}\sqrt{y}$.
- g) Two solutions: Show that for a > 0 there are exactly two real solutions to the equation $x^2 = a$. How many are there for a = 0 and for a < 0?

Exercise 4. Which of the following subsets are open? Which are closed? Justify.

- (a) The point $A = \{0\}$ in \mathbb{R} ,
- (b) The integers \mathbb{Z} in \mathbb{R} ,
- (c) The interval $C = [0, \infty)$ in \mathbb{R} ,
- (d) The interval $D = (0, \infty)$ in \mathbb{R} ,
- (e) The set $E = \left\{ \frac{1}{n} \mid n \in \mathbb{N}, n > 0 \right\}$ in \mathbb{R} ,
- (f) The set $F = E \cup \{0\}$ in \mathbb{R} .

Exercise 5. Write the solutions of the following equations for $z \in \mathbb{C}$ in the form z = a + bi with $a, b \in \mathbb{R}$.

(a)
$$z = (2+3i)(2+i)$$
 (c) $z = \frac{4+3i}{2-i}$ (e) $z^3 = i$
(b) $z = (2-i)^3$ (d) $z = \frac{2-i}{4+3i}$ (f) $z^2 + 3 + 4i = 0$