Exercise 1. Let X and Y be sets, \sim be an equivalence relation on X and \equiv be an equivalence relation on Y. Let $f: X \rightarrow Y$ be a function such that.

$$
x_{1} \sim x_{2} \Longrightarrow f\left(x_{1}\right) \equiv f\left(x_{2}\right)
$$

holds for all x_{1}, x_{2}. Show that there exists a uniquely determined mapping $g: X / \sim \rightarrow$ Y / \equiv which is.

$$
g\left([x]_{\sim}\right)=[f(x)]_{\equiv}
$$

for all $x \in X$.

1. Suppose $f: X \rightarrow Y$ is surjective. Does it follow that g is also surjective?
2. Suppose $f: X \rightarrow Y$ is injective. Does it follow that g is also injective?
3. Suppose $g: X / \sim \rightarrow Y / \equiv$ is surjective. Does it follow that f is also surjective?
4. Assume that $g: X / \sim \rightarrow Y / \equiv$ is injective. Does it follow that f is also injective?

Exercise 2. Decide for yourself which of the following statements are true and which are false.
Let X and Y be sets, and let $f: X \rightarrow Y$ be a function. Let A, A_{1}, A_{2} be subsets of X, and B, B_{1}, B_{2} be subsets of Y.
(1) $f\left(A_{1}\right) \cup f\left(A_{2}\right)=f\left(A_{1} \cup A_{2}\right)$
(4) $f^{-1}\left(B_{1}\right) \cup f^{-1}\left(B_{2}\right)=f^{-1}\left(B_{1} \cup B_{2}\right)$
(2) $f\left(A_{1}\right) \cap f\left(A_{2}\right)=f\left(A_{1} \cap A_{2}\right)$
(5) $\quad f^{-1}\left(B_{1}\right) \cap f^{-1}\left(B_{2}\right)=f^{-1}\left(B_{1} \cap B_{2}\right)$
(3) $f^{-1}(f(A))=A$
(6) $f\left(f^{-1}(B)\right)=B$

Which of the false statements are true if we also assume that f is an injective and a surjective function respectively?

Exercise 3. In this exercise we show the existence and uniqueness of a bijective function $\sqrt{\cdot}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ with property $(\sqrt{a})^{2}=a$ for all $a \in \mathbb{R}_{\geq 0}$.
a) Show that for all $x, y \in \mathbb{R}_{\geq 0}: x<y$ is equivalent to $x^{2}<y^{2}$.
b) Uniqueness: Derive from step 1 that for every $a \geq 0$ there can be at most one element $c \geq 0$ satisfying $c^{2}=a$.
c) Existence: For a real number $a \in \mathbb{R}_{\geq 0}$ consider the non-empty subsets

$$
X=\left\{x \in \mathbb{R}_{\geq 0} \mid x^{2} \leq a\right\}, \quad Y=\left\{y \in \mathbb{R}_{\geq 0} \mid y^{2} \geq a\right\}
$$

and apply the completeness axiom to find $c \in \mathbb{R}$ with $x \leq c \leq y$ for all $x \in X$ and $y \in Y$. Prove that $c \in X$ and $c \in Y$ to conclude that both $c^{2} \leq a$ and $c^{2} \geq a$ hold, so $c^{2}=a$.

Hint. If by contradiction $c \notin X$ is (i.e. $c^{2}>a$), then one can find a suitably small real number $\varepsilon>0$ such that $(c-\varepsilon)^{2} \geq a$. So $c-\varepsilon \in Y$, which contradicts $y \geq c$ for any $y \in Y$. The case of $c \notin Y$ is analogous.

We call square root function the function $\sqrt{\cdot}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$, which assigns to each $a \in \mathbb{R}_{\geq 0}$ the number $c \in \mathbb{R}_{\geq 0}$ uniquely determined by the above construction. We note that $c^{2}=a$, and we call $c=\sqrt{a}$ the square root of a. Show that:
d) Increasing: The function $\sqrt{\cdot}$ is increasing: for $x, y \in \mathbb{R}_{\geq 0}$ with $x<y$, the inequality $\sqrt{x}<\sqrt{y}$ holds.
e) Bijectivity: The function $\sqrt{\cdot}: \mathbb{R}_{\geq 0} \rightarrow \mathbb{R}_{\geq 0}$ is bijective.
f) Multiplicity: For all $x, y \in \mathbb{R}_{\geq 0}, \sqrt{x y}=\sqrt{x} \sqrt{y}$.
g) Two solutions: Show that for $a>0$ there are exactly two real solutions to the equation $x^{2}=a$. How many are there for $a=0$ and for $a<0$?

Exercise 4. Which of the following subsets are open? Which are closed? Justify.
(a) The point $A=\{0\}$ in \mathbb{R},
(b) The integers \mathbb{Z} in \mathbb{R},
(c) The interval $C=[0, \infty)$ in \mathbb{R},
(d) The interval $D=(0, \infty)$ in \mathbb{R},
(e) The set $E=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}, n>0\right\}$ in \mathbb{R},
(f) The set $F=E \cup\{0\}$ in \mathbb{R}.

Exercise 5. Write the solutions of the following equations for $z \in \mathbb{C}$ in the form $z=a+b i$ with $a, b \in \mathbb{R}$.
(a) $z=(2+3 i)(2+i)$
(c) $z=\frac{4+3 i}{2-i}$
(e) $\quad z^{3}=i$
(b) $z=(2-i)^{3}$
(d) $z=\frac{2-i}{4+3 i}$
(f) $z^{2}+3+4 i=0$

