Exercise 1. Let \mathbb{R} be a field of real numbers, and let $u \in \mathbb{R}$. Show that there is a unique element $c \in \mathbb{R}$, with $c^{3}+c=u$. Accordingly, what can you say about the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{3}+x$?

Hint 1: Use exercise 4 of Exercise Sheet 1 for the uniqueness.
Hint 2: Argue as in exercise 3c) of Exercise Sheet 2 for the existence.

Exercise 2. Find all complex numbers c with property $c^{3}+c=0$. Accordingly, what can you say about the function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by $f(z)=z^{3}+z ?$

Compare with exercise 1.

Exercise 3. Draw the following subsets of the complex plane.
(a) $\{z \in \mathbb{C}|1 \leq|z| \leq 3\}$
(b) $\left\{z \in \mathbb{C} \mid \operatorname{Re}\left(z^{2}\right) \geq 0\right\}$
(c) $\{z \in \mathbb{C}||z-1| \leq 3,|z| \leq 3,|z-i| \leq 3\}$
(d) $\{z \in \mathbb{C}|\operatorname{Re}(z+1)=\operatorname{Re}(z+i z),|z| \leq 2\}$
(e) $\left\{z \in \mathbb{C}\left|z \neq 1,\left|\frac{z}{z-1}\right| \leq 1\right\}\right.$

Exercise 4. Find the infimum and the supremum of the following subsets of \mathbb{R}. Do they have a minimum, a maximum?

1. $A=\{a-b \mid a, b \in \mathbb{R}, 1<a<2,3<b<4\}$,
2. $B=\left\{\left.\frac{n}{n+1} \right\rvert\, n \in \mathbb{N}\right\}$,
3. $C=\left\{\left.\frac{n}{m} \right\rvert\, m, n \in \mathbb{N}, m+n \leq 10\right\}$.

Exercise 5. Let $X \subseteq \mathbb{R}$ and $Y \subseteq \mathbb{R}$ be nonempty subsets bounded from above, with property that $x \geq 0$ for all $x \in X$ and $y \geq 0$ for all $y \in Y$. Show that

$$
X Y:=\{x y \mid x \in X, y \in Y\}
$$

is bounded from above, and that $\sup (X Y)=\sup (X) \sup (Y)$ holds. What conventions for the symbol ∞ do you need if X or Y is unbounded?

Exercise 6. Let $X \subseteq \mathbb{R}$ be a nonempty subset with the following property: for all $x, y \in X$ and $c \in \mathbb{R}, x \leq c \leq y \Longrightarrow c \in X$. Show that X is an interval.

Infer that any nonempty intersection of intervals is again an interval.

Exercise 7. Let $X \subset \mathbb{R}$ be a subset which is open and closed. Show that $X=\emptyset$ or $X=\mathbb{R}$ holds.

Hint: Assume X is nonempty, choose $x \in X$, and study the set of real numbers $r>0$ with property $(x-r, x+r) \subseteq X$.

