D-MATH	Analysis I: one Variable	ETH Zürich
Prof. Alessio Figalli	Exercise Sheet 4	HS 2023

Exercise 1. Calculate the following limits in the real numbers if they exist:

$$\lim_{n \to \infty} \frac{7n^4 + 15}{3n^4 + n^3 + n - 1}, \qquad \lim_{n \to \infty} \frac{n^2 + 5}{n^3 + n + 1}, \qquad \lim_{n \to \infty} \frac{n^5 - 10}{n^2 + 1}$$

Do not use here or elsewhere any previously learned cooking recipe that you cannot justify.

Exercise 2. Formulate and prove a general theorem about limits of sequences as in Exercise 1.

Exercise 3. Let $(x_n)_{n=0}^{\infty}$ be a sequence in \mathbb{R} , and let $F \subseteq \mathbb{R}$ be the set of accumulation points of the sequence $(x_n)_{n=0}^{\infty}$. Show that F is closed.

Exercise 4. Let $(x_n)_{n=0}^{\infty}$ be the sequence recursively defined by $x_0 = 1$ and

$$x_n = \frac{2}{3} \left(x_{n-1} + \frac{1}{x_{n-1}} \right)$$

for $n \ge 1$. Show that $(x_n)_{n=0}^{\infty}$ converges and determine the limit.

Exercise 5. Let $(a_n)_{n=0}^{\infty}$, $(b_n)_{n=0}^{\infty}$ and $(c_n)_{n=0}^{\infty}$ be convergent sequences of real numbers, with limits A, B and C respectively. Let $(x_n)_{n=0}^{\infty}$ be the sequence defined by

$$x_n = \begin{cases} a_n & \text{if } n = 3k, k \in \mathbb{N} \\ b_n & \text{if } n = 3k + 1, k \in \mathbb{N} \\ c_n & \text{if } n = 3k + 2, k \in \mathbb{N}. \end{cases}$$

Calculate $\limsup_{n \to \infty} x_n$, $\liminf_{n \to \infty} x_n$ and the set of accumulation points of the sequence $(x_n)_{n=0}^{\infty}$.

Exercise 6. Let $(x_n)_{n=0}^{\infty}$ be a bounded sequence of real numbers such that $(x_{n+1} - x_n)_{n=0}^{\infty}$ converges to 0. Set

$$A = \liminf_{n \to \infty} x_n$$
 and $B = \limsup_{n \to \infty} x_n$.

Show that the set of accumulation points of the sequence $(x_n)_{n=0}^{\infty}$ is the interval [A, B]. Construct an example of such a sequence with [A, B] = [0, 1].

D-MATH	Analysis I: one Variable	ETH Zürich
Prof. Alessio Figalli	Exercise Sheet 4	HS 2023

Exercise 7. Show that the limit superior does not commute with addition: Let $(x_n)_{n=0}^{\infty}$ and $(y_n)_{n=0}^{\infty}$ be bounded sequences. Show that while

$$\limsup_{n \to \infty} (x_n + y_n) \le \limsup_{n \to \infty} x_n + \limsup_{n \to \infty} y_n,$$

holds, equality does not always hold.

Exercise 8. Let $(z_n)_{n=0}^{\infty}$ be a convergent sequence in \mathbb{C} . Show that $(|z_n|)_{n=0}^{\infty}$ converges and give the limit. Conversely, does the convergence of $(|z_n|)_{n=0}^{\infty}$ imply the convergence of $(z_n)_{n=0}^{\infty}$?